Teaching numerical modeling with research problems

Marc A. Hesse

Department of Geological Sciences
Oden Institute for Computational Science and Engineering
Center for Planetary Systems Habitability
The University of Texas at Austin

October 17, 2021

GEO 325M Numerical Modeling for Geoscientists

Cryovolcanism in Occator crater, Ceres

Oxidant transport by brine on Europa

T-dependent ice shell convection on Europa

Groundwater on Mars response to impacts

Hesse & Castillo-Rogez (2018)

Raymond et al. (2020)

Spring 2018

Hesse et al. (2021)

Carnahan et al. (2021)
Wolfenbarger et al. (2021)

manuscript in the works \dots

Research project provides motivation and and guidance for course.

Staggered grid

Potential in cell centers Fluxes on cell faces

Divergence of flux
$$\nabla \cdot q \approx \frac{q_3 - q_2}{\Delta x}$$

$$D = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & 1 \\ & -1 & 1 \\ & & -1 & 1 \end{bmatrix}$$

Gradient of potential

$$\nabla u \approx \frac{u_3 - u_2}{\Delta x}$$

$$G = -D = \frac{1}{\Delta x} \begin{bmatrix} -x^0 \\ 1 & -1 \\ & & 1 & -1 \\ & & & 0 \end{bmatrix}$$
+ natural be's

Programming concept: sparse matrices (spdiags.m)

Programming concept: Tensor/Kronecker products (kron.m)

Discrete operators

Discrete operators

dimension: ID, 2D, 3D

different geometries

Poisson Equation

PDE:
$$-\nabla \cdot \nabla u = f$$

Discrete operators

different geometries

Advection - Diffusion Eqn

Discrek:

$$\vec{l} = \frac{\nabla F}{\vec{N}_{\mu,i} \vec{N}_{\mu}} + \vec{D} * (\vec{l}(\vec{\lambda}) - \vec{l}) \vec{n}_{\mu,i} \vec{l}$$

Linear operator:

Solve:
$$\underline{u}^{n+1} = \underline{L} \setminus (\Delta t \underline{f} + \underline{u}^n)$$

Discrete operators

different geometries

Stokes Equation

PDE:
$$-\mu \nabla_x \nabla_x \underline{\nabla} - \nabla_p = f$$

$$\nabla \cdot \underline{\mathbf{v}} = 0$$

Discrete:

Linear po erater:

$$\vec{\Gamma} = \begin{bmatrix} \vec{D} & \vec{0} \end{bmatrix} \quad \vec{n} = \begin{bmatrix} \vec{b} \\ \vec{b} \end{bmatrix}$$

Allows us to solve a different problem every year!

Code example: Viscous Corner Flow

```
mu = 1;
%% Build staggered grids
Gridp.xmin = 0; Gridp.xmax = 1; Gridp.Nx = 50;
Gridp.ymin = 0; Gridp.ymax = 1; Gridp.Ny = 50;
Grid = build stokes grid(Gridp);
%% Build Stokes operators
[D,Edot,Dp,Gp,Z,I] = build stokes ops(Grid);
A = 2*mu*D*Edot; %
L = [A, -Gp; ...
     Dp, Z];
fs = spalloc(Grid.N,1,0);
%% Boundary conditions
BC.dof dir = [Grid.dof ymax vx(2:end-1);... % tangential velocity on the top
              Grid.dof no pene;...
                                            % no penetration on all bnd's
              Grid.dof pcl;
                                            % pressure constraint
                                            % tangential velocity on the top
BC.q
           = [ones(Grid.p.Nx-1,1);...
              zeros (Grid.N no pene, 1);...
                                            % no penetration on all bnd's
                                            % pressure constraint
[B,N,fn] = build bnd(BC,Grid,I);
%% Solve for Stokes flow
u = solve lbvp(L.fs+fn,B.BC.g.N);
v = u(1:Grid.p.Nf); p = u(Grid.p.Nf+1:end);
PSI = comp streamfun(v,Grid.p);
```


Homework example: Mid-ocean ridge

Undergraduate research

Amy De Luna (2018)

Jaxon Liebeck (2021)

Cryovolcanism

Fluids in salt

Martian hydrology

Hope is to eventually have a undergrad authored paper using class tools.

Thank you for your attention.

Class website: https://mhesse.github.io/numerical_modeling/

Matlab Discrete Operator Toolbox:

https://github.com/mhesse/MatlabDiscreteOperatorToolbox