Teaching numerical modeling with research problems #### Marc A. Hesse Department of Geological Sciences Oden Institute for Computational Science and Engineering Center for Planetary Systems Habitability The University of Texas at Austin October 17, 2021 ## GEO 325M Numerical Modeling for Geoscientists Cryovolcanism in Occator crater, Ceres Oxidant transport by brine on Europa T-dependent ice shell convection on Europa Groundwater on Mars response to impacts Hesse & Castillo-Rogez (2018) Raymond et al. (2020) Spring 2018 Hesse et al. (2021) Carnahan et al. (2021) Wolfenbarger et al. (2021) manuscript in the works \dots Research project provides motivation and and guidance for course. Staggered grid Potential in cell centers Fluxes on cell faces Divergence of flux $$\nabla \cdot q \approx \frac{q_3 - q_2}{\Delta x}$$ $$D = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & 1 \\ & -1 & 1 \\ & & -1 & 1 \end{bmatrix}$$ # Gradient of potential $$\nabla u \approx \frac{u_3 - u_2}{\Delta x}$$ $$G = -D = \frac{1}{\Delta x} \begin{bmatrix} -x^0 \\ 1 & -1 \\ & & 1 & -1 \\ & & & 0 \end{bmatrix}$$ + natural be's Programming concept: sparse matrices (spdiags.m) Programming concept: Tensor/Kronecker products (kron.m) ### Discrete operators ## Discrete operators dimension: ID, 2D, 3D different geometries #### Poisson Equation PDE: $$-\nabla \cdot \nabla u = f$$ #### Discrete operators ## different geometries ## Advection - Diffusion Eqn #### Discrek: $$\vec{l} = \frac{\nabla F}{\vec{N}_{\mu,i} \vec{N}_{\mu}} + \vec{D} * (\vec{l}(\vec{\lambda}) - \vec{l}) \vec{n}_{\mu,i} \vec{l}$$ ### Linear operator: Solve: $$\underline{u}^{n+1} = \underline{L} \setminus (\Delta t \underline{f} + \underline{u}^n)$$ ### Discrete operators ## different geometries #### Stokes Equation PDE: $$-\mu \nabla_x \nabla_x \underline{\nabla} - \nabla_p = f$$ $$\nabla \cdot \underline{\mathbf{v}} = 0$$ #### Discrete: #### Linear po erater: $$\vec{\Gamma} = \begin{bmatrix} \vec{D} & \vec{0} \end{bmatrix} \quad \vec{n} = \begin{bmatrix} \vec{b} \\ \vec{b} \end{bmatrix}$$ Allows us to solve a different problem every year! ## Code example: Viscous Corner Flow ``` mu = 1; %% Build staggered grids Gridp.xmin = 0; Gridp.xmax = 1; Gridp.Nx = 50; Gridp.ymin = 0; Gridp.ymax = 1; Gridp.Ny = 50; Grid = build stokes grid(Gridp); %% Build Stokes operators [D,Edot,Dp,Gp,Z,I] = build stokes ops(Grid); A = 2*mu*D*Edot; % L = [A, -Gp; ... Dp, Z]; fs = spalloc(Grid.N,1,0); %% Boundary conditions BC.dof dir = [Grid.dof ymax vx(2:end-1);... % tangential velocity on the top Grid.dof no pene;... % no penetration on all bnd's Grid.dof pcl; % pressure constraint % tangential velocity on the top BC.q = [ones(Grid.p.Nx-1,1);... zeros (Grid.N no pene, 1);... % no penetration on all bnd's % pressure constraint [B,N,fn] = build bnd(BC,Grid,I); %% Solve for Stokes flow u = solve lbvp(L.fs+fn,B.BC.g.N); v = u(1:Grid.p.Nf); p = u(Grid.p.Nf+1:end); PSI = comp streamfun(v,Grid.p); ``` ## Homework example: Mid-ocean ridge ## Undergraduate research Amy De Luna (2018) Jaxon Liebeck (2021) Cryovolcanism Fluids in salt Martian hydrology Hope is to eventually have a undergrad authored paper using class tools. ### Thank you for your attention. Class website: https://mhesse.github.io/numerical_modeling/ Matlab Discrete Operator Toolbox: https://github.com/mhesse/MatlabDiscreteOperatorToolbox