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CHE 504: Advanced Reactor Design  
Tutorial No. 3: - Instructor: J.E. Gatica 
                            
Sample Problem [see handout, P13-8 (3rd Ed.)] 
A pulse test for a “black box” [reactor] unit yields the following RTD  
 

 
COUT(t) 

0.1 t for 0 ≤ t ≤ 5 
0.05 (15 – t) for 5 < t ≤ 15 
0 elsewhere 

 
 (b) Find the [average] “residence time” (i.e., <t>) 
 
This was a simple integral  

    

 

t = t E(t) dt
0

∞∫  
 

For a second order reaction with k CoA = 1.2 min-1 (remember, Da = k CoA V/Q) 
 
(c and d). Find the conversion for an ideal CSTR and an ideal PFR 
 
Recitation 
 
 

 
  

Note that we are now able to 
calculate the conversion in ideal 
flow reactors [c & d], i.e.,  
 
Da = k*(CAo^(n-1)) * Tau; 
fprintf ('\n Da = %7.3f \n',Da); 
 
Which yields 
 
Reactor Performance:  
Da =   8.001  
 
 xA(CSTR)  =   0.703 
 xA(PFR)   =   0.889 
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Segregation Models 
 
e. Find the conversion for a “segregated” fluid (“macrofluid”). 
 
The definition of the conversion for a macrofluid is 

    

 

xA,MACRO = xA
b(t) E(t) dt

0

∞∫  
where “xAb” is the conversion in a batch reactor. One could easily follow the 
approach used for the average residence time calculations. This reduces to find the 
conversion in the batch reactor as a function of time 
 
The solution for a batch reduces to solving the equation 

    

 

dNA

dt
= −k CA

n V,  or

dxA

dt
= k CA

o( )n-1
 1 − xA( )n  

which can be easily solved for integer values of “n.” For n=2, for instance, one can 
find 

    

 

xA(t) =
kCA

o t 
1 + kCA

ot  

Now the integral  

    

 

xA,MACRO = xA
b(t) E(t) dt

0

∞∫  
grows increasingly complex, and any hopes for an analytical solution would demand 
a significant time spent in solving the equation. This approach is all right, except 
that the batch reactor doesn’t always have an analytical (or at least a simple 
analytical) solution. A more versatile approach is to transform the problem into two 
coupled differential equations, namely 

∫
∞

=
0,  )( )( dttEtxx b

AMACROA  

becomes 

)( )(, tEtx
dt

dx b
A

MACROA =
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which is solved in conjunction with the equation for the batch, i.e. 
 

( ) ( )nb
A

o
A

b
A xCk

dt
dx

−= 1  1-n

 

 
which, as expected,  yields identical results 
 
  xA_MACRO   =   0.861 (ode15s) 
   xA_MACRO   =   0.860 (quad) 
 
It is interesting to see a plot of the solution: 
 
Can you make any comments out of this plot?  
 
Why does the conversion for the batch reactor show a monotonic increase, while 
the performance for the macro-fluid reaches a “plateau”? 
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f. Find the conversion for a fluid in a maximum state of mixedness (“microfluid”). 
 
Let us now proceed to the micro-fluid calculations. This is a slightly more complex 
problem, the differential equation seems simple 

∞→→









−

+=
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λ

λ

for   ,0  subject to
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x
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r

dt
dx

 

The problem here is what are the “initial conditions”? λ=0 would actually indicate 
t→∞, in other words, the conversion at the exit of the reactor (which is what we 
are trying to find!). So, the simplest alternative is to integrate backwards (as 
suggested in Fogler, cf. Example 13-7). There are a few problems associated with 
this idea, namely 

• We cannot use “ode45” (or any other ODE solver available in MatLAB). 
• We need a table of values for E(λ) and F(λ), i.e. we need to solve F(λ) first.  

 
If we use a simple discretization in finite differences, the equation becomes 

( ) ),( ),( 1

then

),(
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where the system will be fully implicit for α=1, and fully explicit for α=0 (if we 
integrated backwards it would be just the opposite). Fogler implemented a fully 
explicit algorithm for backwards integration, i.e.  
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The problem with this approach is that is numerically unstable (we will see below 
the results when trying to replicate Fogler’s example). The first question is “What 
is a good choice for Δλ?”  
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Unfortunately, for non-linear problems (there is no theory for stability in non-linear 
problems!), we need to use trial-and-error. The “rule of thumb” is to select Δλ 
“small” and try, then use Δλ/2 and try again until two successive results do not 
differ “significantly” (significant figures, accuracy, tolerance, etc...). 
 
For experimental data, as presented in the textbook (for Example 13-7), there are 
no alternatives, and the question is actually irrelevant.  
 
Fogler suggests interpolating some of the values (with no explanation or reasons). 
There is no numerical justification to do what he suggests, interpolating data is 
similar to generating “experimental data” we did not collect … It might be a good 
approximation but it will depend of the system being analyzed or the data available. 
Fogler’s suggestion might work for this particular example … but it is likely to fail 
for other problems … 
 
This is not discussed by Fogler, but the common approach is (provided we have a 
reliable interpolation algorithm or that the data is not corrupted by serious 
experimental error … for data “smooth” as the one provided it will work seamlessly 
…  …) 
 
A more rigorous approach is to avoid generating artificial data, and use a Fully 
Implicit approach, instead (also implemented in micromix1.p); which is often 
unconditionally stable.  
 
Let us examine both approaches together … 
 
This is implemented in the MatLAB scripts “micromix2.p” and “micro_f.p” 
[we will skip the details of this script as they do not pertain to CHE 504] 
 
% function micromix2.m 
%   Calculation of micromixing for a 
%   system with a tabulated function, t vs. E(t) 
% 
%   Usage 
%   xA_MICRO = micromix2 (method, t, E, iprint, k, CAo, n) 
% 
%   where 
%   Inputs  
%   method : method selection flag 
%       < 0:    Fully explicit (Fogler's example) integration 
%       > 0:    Fully implicit integration 
%   t      : vector of t values, t(i), i =1, ..., N 
%   E      : function E(t), E(i) is E(t) for t=t(i), i =1, ..., N 
%   iprint : printing flag 
%           > 0, print iteration results 
%           < 0, no printing 
%   k, CAo, n 
%       are kinetic parameters describing a power-law kinetics 
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%       Da = k * (CAo^(n-1))*Tau 
 
If we know the function that describes the RTD function (E(t)) as a function of 
time (t) [as in Problem P13-8, assigned in the Homework], then we can use a 
fully explicit integration approach along with a trial-and-error approach; i.e., 
select Δλ “small” and try, then use Δλ/2 and try again. The integration process is 
repeated until two successive results do not differ “significantly” (significant 
figures, accuracy, tolerance, etc...). 
 
This is implemented in the MatLAB script “micromix1.p”  
[we will skip the details of this script, they do not pertain to CHE 504] 
 
% function micromix1.m 
% 
%   Calculation of micromixing for a 
%   system with  
%        *** a known RTA function, E(t)*** 
% 
%   Usage 
%   xA_MICRO = micromix1 (E, nsig, iprint, infinity, k, CAo, n) 
% 
%   where 
% 
%   Inputs 
%   E, function E(t), it returns E(t) for a given t 
%   nsig    : number of significant figures sought 
%           in the solution 
%   iprint  : printing flag 
%           > 0, print iteration results 
%           < 0, no printing 
%   infinity : a value of t "large enough" 
%           to ensure all the tracer has left the reactor 
%   k, CAo, n : kinetic parameters, for 
%       rA = rate(xA) = - k * CAo^n *(1-xA)^n; 
 
 
 
Supplementary Reading for Next Week:  

Review Example 13-7 
 


