
What makes a virus an epidemic? 
 
Background During the winter of 1968-69, the United States was swept by a virulent new strain 
of influenza named Hong Kong flu.  At that time, no flu vaccine was available, so many more 
people were infected than would be the case today.  We will study the spread of the disease 
through a single urban population, New York City.  The data displayed in the following table are 
weekly ”excess” pneumonia-influenza deaths, that is, the numbers of such deaths in excess of 
the average numbers to be expected from other sources.  The  graph displays the same data  
(Source: Centers for Disease Control) 
 
 
Week Flu-related deaths Week Flu-related deaths 

1 14 8 108 

2 28 9 68 

3 50 10 77 

4 66 11 33 

5 156 12 65 

6 190 13 24 

7 156   
 
 

 
 
Submit documentation of your answers to the following questions. 
 



 

1. Create a linear and logarithmic plot of flu related (weekly) deaths.  What observations can 
you make about the trend?  What is the maximum number of weekly deaths?  When did the 
maximum occur? 

   
2. Relatively few flu sufferers die from the disease or its complications, even without a vaccine.  

However, we may reasonably assume the number of excess deaths in a week was 
proportional to the number of new cases of flu in some earlier week.  Thus, the figures reflect 
(proportionally) the rise and subsequent decline in the number of new cases of Hong Kong 
flu.  At any given time during a flu epidemic, we want to know the number of people who are 
infected.  We also want to know the number who have been infected and have recovered, 
because we typically assume that they are now immune to the disease.  (To simplify our 
model we will include the dead amongst the recovered.  We will also ignore the people who 
are born or die from non-flue cases or move in and out of the city during those weeks.)  The 
remainder of the population is still susceptible.  With these assumptions, the fixed total 
population (approximately 7,900,000) may be divided into three categories, 

 
● those who are infected, I(t) 
● those who have recovered, R(t) and, 
● those who are still susceptible, S(t),  

 
such that the independent variable t is time.  We can normalize each of those functions by 
creating a second set of equations that represent the fraction of the total population in each 
category.  If N is the total population, we have: 

 
● i(t) = I(t)/N 
● r(t) = R(t)/N 
● s(t) = S(t)/N 
 
Under the assumptions we have made: 

a. How do you think s(t) should vary with time?  How should r(t) vary with time?  How 
do you think i(t) should vary with time? 

b. Sketch what you think the graph of each of these functions looks like 
c. Explain why, at each time t, s(t) + i(t) + r(t) = 1 

 
3. Next, let’s make some assumptions about the rates of change of our dependent variables.  

No one is added to the susceptible group, since we ignore birth and migration.  The only 
way an individual leaves the susceptible group is by becoming infected.  The number of 
susceptibles depends on the number already susceptible, the number of individuals already 
infected and the contact between the two groups.  Let us suppose that the coefficient 𝜷𝜷 
represents the contacts per day between the infected and the susceptible that are sufficient 
to spread the disease.  If we assume homogeneous mixing of the populations, each infected 
individual generates 𝜷𝜷 * s(t) new infected individuals per day.   

We also assume that a fixed fraction µ of the infected group will recover during any given 
day.  For example, if the average duration of infection is three days, then, on average, one-
third of the currently infected population (actually “infectious” population recovers each day) 
recovers each day.  We will ignore the “recovered” (non-infectious) people, for now, who still 



 

feel miserable, and might even die later from pneumonia.  As a result we have the following 
differential equations 

● The Susceptible Equation: ds/dt = -𝜷𝜷 * s(t) * i(t) 
● The Recovered Equation: dr/dt = 𝝁𝝁 * i(t) 
● The Infected Equation:  di/dt = 𝜷𝜷 * s(t) * i(t) – 𝝁𝝁 * i(t) 

 
a. Explain why ds/dt + di/dt + dr/dt = 0? 

b. Describe both components of the infected equation. 
c. What do the minus signs represent? 

 

4. Finally we complete our model by giving each differential equation an initial condition.  For 
this particular virus hardly any was immune, so almost everyone was susceptible.  That 
would suggest s(0) = 1.  We will assume there was a trace level of infection in the 
population, say, 10 people.  Then i(0) = 0 and r(0) = 0.  We don’t know the values for the 
parameters β and µ. We can estimate them, and then adjust them as necessary to fit the 
excess death day.  We estimated the average period of infectiousness as three days.  That 
would suggest µ = ⅓.  If we guessed that each infected would make a possibly infected 
contact every two days, then β = ½. 

The following program simulates the effects of the virus on the populations of New York City. 

function dpop = SIRmodel(pop,b,k) % this is the function header, note time is not  

% a variable 

s = pop(1);  % pop(1) is the input susceptible population.  pop is a vector. 

i = pop(2);   % pop(2) is the input infected population 

r = pop(3);  % pop(3) is the input recovered population 

 

dpop=[   % dpop is the rate of change of each of the population variables  

      - b*s*i;  % this the equation for the rate of change of s, b is for beta 

      (b*s*i - k*i); % this the equation for the rate of change of i, k is for mu 

     k*i];  % this the equation for the rate of change of r 

end 

 

 

 



 

a. Type the program into an m-file and save the function. Run the function with the givens 
provided. 

pop = [ 1 - (10/9700000),10/9700000,0] 

µ = ⅓ 

β = ½ 

     SIRmodel(pop, µ, β) 

What results do you get for dpop? Explain the significance of positive and negative 
signs. 

b. Euler’s method is a numerical solution method for a system of differential equations.  if 
we know yo (i.e. i(0), r(0), and s(0))  and we have a way to calculate dy/dt at any point 
(t,y) (i.e. dpop), then it follows that we can calculate a sequence of y-values from the 
“slope and intercept equation”, 

yn = yn-1 + (dy/dt)n-1*Δt 

where �t is a small change in time.  For the SIR model, we want the dependent 
variables to be s, i, and r.  Use the following script to apply Euler’s method to the 
SIRmodel function.  Display a graphical solution of s, i, and r (POP(1,:), 
POP(2,:),POP(3,:)) on a single plot. 

function dpop = SIRmodel(t, pop,b,k) % this function now has t as a variable  

s = pop(1);  % pop(1) is the input susceptible population.  pop is a vector. 

i = pop(2);   % pop(2) is the input infected population 

r = pop(3);  % pop(3) is the input recovered population 

 

dpop=[   % dpop is the rate of change of each of the population variables  

      - b*s*i;  % this the equation for the rate of change of s  

      (b*s*i - k*i); % this the equation for the rate of change of i  

     k*i];  % this the equation for the rate of change of r 

end 

 

%Euler's Method 

b = (1/2); 



 

u = (1/3); 

 

dt = 10;   % let �t = 10 days  

tspan = 0:dt:140;  % let t range up to 150 days 

pop0 = [1-1.27e-6;1.27e-6;0];  % this is [s(0),i(0),r(0)] 

POP(:,1) = pop0;  % POP is the matrix of population data 

for i = 1:(150/dt)  % forward euler in a for loop 

      POP(:,i+1) = POP(:,i) + dt * SIRmodel(tspan, POP(:,i),b,u); 

end 

 

c. Change Δt to 1 day and replot the solutions.  What observations do you have in 
comparison to the previous solution? 

d. ode45 is a built-in ordinary differential equation solver.  Implement the following code 
and replot the solutions.  What observations do you have in comparison to the previous 
solution? 

function dpop = SIRmodel(t, pop,b,k) % this function now has t as a variable  

s = pop(1);  % pop(1) is the input susceptible population.  pop is a vector. 

i = pop(2);   % pop(2) is the input infected population 

r = pop(3);  % pop(3) is the input recovered population 

 

dpop=[   % dpop is the rate of change of each of the population variables  

      - b*s*i;  % this the equation for the rate of change of s  

      (b*s*i - k*i); % this the equation for the rate of change of i  

     k*i];  % this the equation for the rate of change of r 

end 

 

 



 

[t,pop] = ode45(@(t,pop)SIRmodel(t,pop,b,k),tspan,pop0); 

plot(tspan,pop(:,1),tspan,pop(:,2),tspan,pop(:,3)) 

xlabel('Time') 

ylabel('Population') 

title('ode45') 

I’ve posted an alternate script for this approach in Canvas-funhandleapproach.m 

e. Take the output of the infected population and find its maximum over the region of 
interest.  Plot the maximum (as a separate marker) on the previous figure. 

 

5. While the value of µ is related to the flu’s infectious period the value of β is approximation of 
the flu’s “infectiousness”, and there is no way to directly observe β.  Taken together, these 
values determine the disease’s spread.  In reality, 𝜷𝜷 and µ are a function of a city’s 
population, density, and “mixing rate”.   

a. Let’s experiment with changes in 𝛽𝛽.  Keep µ fixed at ⅓.  Create a function (with a loop) 
and plot i(t) with different values of β.   Use equally spaced values, ranging from 0.5 to 
2.0.   You will also want to increase the interval of interest for time to see the results for 
the lower levels of contact rate.   Store the peak levels of the infected population in an 
array and when they occur. Then plot those results versus β.  Describe how these 
changes affect the graph of i(t) in the context of the SIR model. 

b. Let’s experiment with a change in µ.  Return β to ½.  Create a function (with a loop) and 
plot i(t) with different values of µ.   Use equally spaced values, ranging from 0.1 to 0.6.   
You will also want to increase the interval of interest for time to see the results for the 
lower levels of contact rate.   Store the peak levels of the infected population in an array 
and when they occur. Then plot those results versus µ.  Describe how these changes 
affect the graph of i(t) in the context of the SIR model. 

c. Overlay an appropriately scaled plot of flu-related deaths (our original data set with 
the deaths divided by 7900000) with your model of the infected population (i(t)).  
Which model parameters (β, µ) in the given range seem reasonable?  Explain your 
conclusion. 

6. The ratio of β to µ, is known as the contact number, Ro =β/µ.  The contact number is a 
combined characteristic of the population and the disease.  In similar populations, it 
measures the relative contagiousness of the disease, because it tells us indirectly how many 

https://mtsac.instructure.com/courses/84707/modules/items/1968554


 

of the contacts are close enough to actually spread the disease.  This formalism (c) allows 
for the derivation of the following expression from  di/dt divided by ds/dt, 

i = -s +(1/RO)*ln(s) + i(0) 

which is a time-independent equation.  There are two times when we know (or can estimate) 
the values of i and s: at t = 0 and t = ∞.  i(0) is approximately 0.  Thus: 

i = -s +(1/RO)*ln(s)  

After a long time, i(∞) is approximately 0 again, and s(∞) is some constant.  If there has 
been good reporting of the numbers who have contracted the disease, then  

RO = (ln sinf) / (sinf – 1) 

Use a numerical solution from Part 5, part c to estimate the value of s(∞).  Use this value to 
calculate the contact number Ro for the Hong Kong flu.  Compare your calculated value with 
the one you get by direct calculation from the definition, Ro = β/µ.  

7. When experimenting with the relative sizes of β and µ in Part 5, you found that if is small 
enough relative to µ, then no epidemic can develop.  In Part 6, if the contact number Ro is 
small enough, then there will be no epidemic.  But another way to prevent an epidemic is to 
create herd immunity by reducing the initial susceptible population (so) artificially through 
inoculation. 

The point of inoculation is to create herd immunity by stimulating in as many people as 
possible the antibodies that confer immunity without actually giving those people the 
disease.  The fraction of the population that must be inoculated to obtain herd immunity will 
depend upon the contact number.  Mathematically speaking, if i’(0) = (µ) (Ro so - 1) io, 
then as long so is less than 1/Ro, the rate of change in the infectious population 
should be negative; and an epidemic will not occur. 

a. From 1912 to 1928, the contact number for measles in the U.S. was 12.8. If we assume 
that  Ro  is still 12.8 and that inoculation is 100% effective -- everyone inoculated obtains 
immunity from the disease -- what fraction of the population must be inoculated to 
prevent an epidemic? 

b. Suppose the vaccine is only 95% effective. What fraction of the population would have to 
be inoculated to prevent a measles epidemic? 
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