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Part II Determine Error Bounds  

Task 

1. Review Simpson’s Rule 

Simpson’s Rule is a method to numerically integrate a function where the function is 

approximated using parabolas. The formula for implementing Simpson’s Rule is  
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Note: n must be an even number. 

 

2. Find Error Bound 

The error bound SE for Simpson’s Rule is given by  
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where  Kxf )()4( for bxa   and   )(4 xf is the 4th derivative of ).(xf  [4]  

 

a) Find the 4th derivative of 
2xe and then find the maximum value of the 4th derivative over 

the limits of integration. 
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               Figure 3: Graph of fourth derivative of 
2xe . 

At   ,12,0 4  fx  at   4.7,1 4  fx  

  124 f for 10  x  

 

 

b) Find n so that  .0001.0SE  
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3. Review Taylor Polynomials 

The Taylor series of a function )(xf  that has a power series expansion at ,a is of the form 
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a) Find the Taylor polynomial for 
2

)( xexf  at .0a   

Since  
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b) Integrate the Taylor polynomial 

 

Integrating the polynomial gives 
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Evaluating the integral at the limits of integration, gives 
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c) Find the number of terms needed in a Taylor polynomial to have an error of less than 

0.0001.  

 

Since the Taylor polynomial is an alternating series, the Alternating Series Estimation Theorem 

can be used to determine the number of terms to include in the series [4]. 
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Looking at the value of the 6th, 7th and 8th terms in the series, 
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we see that 7 terms are need to achieve the desired accuracy. 
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Part III Writing MATLAB Code 

 

  

 

4. MATLAB code to evaluate 


0

)sin( dxx  using Simpson’s Rule is given below.  

5.  Modify the code by changing the necessary lines of the program to do the following: 

 Change the function from sin(x) to 
2xe . Note: 

2xe in MATLAB is written as exp(x.^2). 

 Change the limits of integration to match the limits for 


1

0

2

dxe x . 

 

Modified code with comments. 

 

% simpsonint.m      

% Evaluates the integral of a function over an interval 

% input: function f(x) = exp(-x^2) 

%           limits of integration: a – lower limit; b – upper limit 

% output: the value of the integral 

 

format long  % display numbers in the long fixed-decimal format 

clear           % removes all variables from the current workspace 

a=0;              % lower limit of integration 

b=1;            %  upper limit of integration 

% enter the number of intervals from the keyboard 

n=input('input number of intervals (n must be an even number) ->'); 
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h = (b-a)/n;  %  width of interval 

  

fa = exp(-a.^2); % f(a)- function value at left endpoint 

fb = exp(-b.^2);   % f(b)- function value at right endpoint 

  

fsum=0;  % the area of each interval will be stored in fsum. Start with 0 area 

  

for i = 2:2:n;  % all 4*f(a+nh) terms to f(b) h = (1,3,5,7,...,n-1) 

    x = (a+(i-1)*h); % find x-value of all terms multiplied by 4 

    fx = exp(-x.^2);  % evaluate function at each x-value 

    fsum = fsum + 4*fx; % add to current sum 

end 

  

for i = 3:2:n;  % all 2*f(a+nh) terms to f(b) h = (2,4,6,...,n-2) 

    x = (a+(i-1)*h);  % find x-value of all terms multiplied by 2 

    fx = exp(-x.^2);  % evaluate function at each x-value 

    fsum = fsum + 2*fx;  % add to current sum 

end 

  

result = (h/3)*(fa+fb+fsum)  % find area 

 

 

  

 

Part IV Use MATLAB to evaluate the integral, .

1
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 dxe x   

 

The exact value of the integral is assumed to be the value calculated using the integral 

command. The value of the integral is calculated using the following code. 

 

syms x 

format long 

fun= @ (x)exp(-x.^2); 

q=integral(fun,0,1) 

 

q = 0.746824132812427 
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Table 1 Error Using Simpson’s Rule 

 

n (number of intervals) Value of integral Error 

2 0.747180428909510 -0.00035629 

4 0.746855379790987 -0.00060312 

6 0.746830391489345 -0.00000626 

 

  

Taylor polynomial code 

 

syms x 

expr = exp(-x.^2); % state function 

texpr = taylor(expr, 'Order', 8)    % get the terms in the Taylor series 

int(texpr,x ,0,1)   % integrate terms in Taylor series 

 

Table 2 Error Using Taylor Polynomials 

 

n (number of terms) Value of integral Error 

5 0.747486772486773 -0.00066264 

6 0.746729196729197 0.00009494 

7 0.746836034336034 -0.00001190 

8 0.746822806822807 0.00000133 

 

  

 

https://www.mathworks.com/help/symbolic/int.html#btybolt-expr
https://www.mathworks.com/help/symbolic/int.html#btybolt-a
https://www.mathworks.com/help/symbolic/int.html#btybolt-b

