MATLAB Exploration III

MA 377/MA 577 Fall 2018

Due at the beginning of class on Wednesday, October 17, 2018 [20 points]

Use MATLAB to Explore Lagrange Polynomials

ASSIGNMENT:

The goal is to investigate Lagrange Polynomials, $P_n(x)$.

- (a.) Via graphs of Lagrange polynomials [See for example Figure 3.5 on page 108.] explore the behavior of Lagrange Polynomials. Describe the observed behaviors. A suggestion: Using the data set $\{x_i = i\}_{i=0}^9$ compare the graphical images of $L_{9,k}(x)$ for k = 0, 1, 2, ..., 9. Describe/comment on the behaviors and properties you observe.
- (b.) For pp112-13, #6(a.) and #8(a.), using graphs of f(x) and $P_n(x)$, for n=1,2,3, compare the effectiveness of the $P_i(x)$ to approximate f(x). Submit copies of three sets of graphs: f(x) and $P_i(x)$, i=1,2,3 along with your comments about each set of graphs.

BONUS

[5 points] 1. Using the function in 8(a.) repeat (b.) for Taylor Polynomials, $T_i(x)$, i = 1, 2, 3 about x = 0.43.

[3points] 2. Carefully compare the graphical results for Lagrange Polynomials vs Taylor Polynomials for their effectiveness at approximating f(x).

Hand-in a hardcopy or send a digital copy to weiss@fairfield.edu of your solution by the beginning of class on Wednesday, October 17, 2018.

Your solution should include:

- 1. A copy of your *MATLAB* code(s) and output(s);
- 2. A report (your comments) about your results.