
Hands On 
Design of a Phase Lead Network for a DC Motor Model 

 
 
0. Introduction 
 
A hands on activity is proposed within the Automatic Control area in an Information Science 
Engineering curriculum, which can contain basic and elective courses of Automatic Control for BSc 
and MSc degrees.  
Through this design example, it is shown that a ‘learning by doing approach’, which enhances the 
development of theoretical and practical issues proposed to the student at the same time, should 
support the teaching activity. On the other hand, the use of ‘real or realistic examples’ taken from 
different engineering backgrounds helps to engage students and attract their interest towards 
difficult theoretical activities. Moreover, the design of proper ‘manual and semi-automated 
procedures’ that are tailored to the considered application examples drives the students to learn the 
engineering approach to solve practical problems.  
The typical problem under consideration concerns the teaching of the design of phase lead (lag) 
control networks by using basic tools of the Control System Toolbox, as well as the derivation of 
transfer function and state-space models from a physical model of a real system. It is known that the 
design of control networks can be performed using empirical approaches or semi-automated 
methodologies. To this aim, the synthesis of a phase lead or lag network can be easily achieved 
from the required response transient time or phase margin performances, by means of the use of the 
root locus or Bode diagram, and through the analysis of proper frequency function.  
 
 
 
1. DC Motor Model Derivation 
 
The DC motor represented in Figure 1 is controlled through its armature (variables with subscript 
‘a’) via the voltage and current  and , respectively. Its field (variables with subscript ‘e’) is 
excited by the constant voltage and current  and , respectively. Figure 1 indicates also the load 
inertia 

aV ai

eV ei
J , the resistance torque due to the frictional torque of the rolling bearings and the ventilation 

resistance  (also depending on the angular speed f )(tω ), and the load torque . cC
 

 
Figure 1: DC motor scheme. 

 



The variables of the DC motor considered in this problem are: , Ω= 3aR mHLa 30= , 
, , and . In particular, the parameter  represents the 

armature resistance,  is its inductance, whilst the constant  represents the counter-
electromotive force generated by the motor rotating at angular velocity 

ANmkm /2= 23 mkgJ = radNmsf /105 5⋅= aR

aL mk
)(tω . If the armature 

voltage  and the load torque  are the inputs of the model, whilst its outputs are the 
armature current  and the angular velocity 

)(tVa )(tCc

)(tia )(tω , from the scheme of Figure 1 it is possible to 
derive the state-state model in the form of Eq. (1): 
 

   (1) 
 
The matrices of the state-space mode of Eq. (1), ( )DCBA ,,, , are represented by the relations of Eq. 
(2):  
 

  (2) 
 

when the controlled output is )()( tty ω= , with: 
 

    (3) 
 

 
If the relative angular position )(tα  is also required, the relations of Eq. (3) have the form of Eq. 
(4): 

 

    (4) 
 

When a Single-Input Single-Output (SISO) model of the DC motor is considered for control design 
purpose, the control input can be defined as )(V)( a ttu = , whilst the controlled output is 



)()( tty α= . Under these assumptions, the matrices of the DC motor model have the form of the 
relations of Eq. (5): 

 

  (5) 
 

The transfer function of the SISO model can be determined by using the relation of Eq. (6): 
 

( ) DBAIsCsG +−= −1)(      (6) 
 

that is directly implemented by the Matlab function [b,a] = ss2tf(A,B,C,D). It converts 
the state-space representation  into the equivalent transfer function , whose 
coefficients of the numerator and denominator polynomials are defined by the Matlab vectors b and 
a, respectively. The DC motor matrices 

( DCBA ,,, ) )(sG

( )DCBA ,,,  are defined in the script file provided for the 
hands on activities (file DC_motor_model_3rd_order.m). 
 
 
 
02. Control Design Problem Definition 
 
Given the SISO model of the DC motor, the controller design problem requires to determine a 
phase lead or lag network described by the transfer function  of Eq. (7): )(sR
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By using the continuous time root locus for the controlled system  of Eq. (6), with reference to 
the network , the problem requires to determine the values of the pole and the zero,  and , 
as well as the DC gain 

)(sG
)(sR ps zs

K , such that the transient conditions (8) are fulfilled in terms of settling time 
 and maximum overshoot : aT %S
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with respect to the reference unit step input. 
 
 
 
3. Controller Design Solution 
 



By executing the Matlab script file DC_motor_model_3rd_order.m, the transfer function 
 defining the 3rd order model of the DC motor is obtained in the form of Eq. (9): )(sG

 

sss
sG

61.44100
22.22)( 23 ++

=      (9) 

 
which contains a pole in , thus resulting a ‘type 1’ system. The response of this model presents 
zero steady state error when the reference input is a unit step function. As already remarked, the 
transient response of this system has to fulfil the following conditions: 

0=s
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when controlled by the network  of Eq. (7) for a proper definition of the parameters , , 
and 

)(sR ps zs
K , and for the reference unit step . )(tr

The Matlab script file DC_motor_model_3rd_order.m defines the transfer function of the 
controlled system, by using the following MATLAB code: 
 
Gs_sys = ss(A,B(:,1),C(2,:),D(1,2)); 
 
[numGs,denGs] = tfdata(Gs_sys,'v'); 
 
Gs = tf(numGs,denGs); 
 
as the matrices of the state-space model of the DC motor have been already defined in the same 
script file. 
 
The root locus of the closed-loop system  can be obtained from the following MATLAB 
function: 

)(sG

 
>>rlocus(Gs) 
 
that is depicted in Figure 2. 
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Figure 2: Root locus of the system G(s). 

 
Figure 2 highlights that most of the root locus of  develops in the right half plane, and only a 
limited part of it that is requiref for the design of the network  is in the left half place, 
corresponding to a stable system. By using the MATLAB function rlocfind(Gs), the critical 
(ultimate) gain  can be easily determined, which defines the stability region for the closed-loop 
system, described by the relation of Eq. (11): 

)(sG
)(sR

cK

 
0)(1 =+ sGK       (11) 

 
with: 
 

cKK ≤≤0       (12) 
 
The MATLAB command rlocfind is used for the interactive selection of the gain from the root 
locus plot generated by rlocus. The command rlocfind puts up a crosshair cursor in the 
graphics window, which is used to select a pole location on the existing root locus. In this way, the 
following code is used with the root locus plot of Figure 2: 
 
>> Kc=rlocfind(Gs) 
 
Select a point in the graphics window 
 
selected_point = 
 
0.0000 + 6.1929i 
 
Kc = 
 
172.5982 
 



The current selection of one of the intersection point between the root locus of  and the 
imaginary axis determines the critical (ultimate) gain 

)(sG
6.172=cK , as shown in Figure 3. 
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Figure 3: Detail of the root locus of G(s). 

 
Moreover, the following command displays the roots of the polynomial of the denominator denGs 
of the transfer function , which are: )(sG
 
>> roots(denGs) 
 
ans = 
 
0 
 
-99.5536 
 
-0.4481 
 
>> 
 
thus highlighting that the controlled system  has a pole )(sG 0=s  (‘type 1’ system) and is simply 
stable. Note that the denominator denGs of the transfer function  was determined with the 
following function: 

)(sG

 
[numGs,denGs] = tfdata(Gs_sys,'v') 
 
Moreover, by using the closed-loop scheme implemented in the Simulink environment in Figure 4 
(file ‘DC_motor_controller.mdl’), the settling time and the maximum overshoot can be 
easily computed as follows: 
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Figure 4: Closed-loop system of G(s) with 1=K . 

 
>> lsiminfo(ync,t) 
 
ans = 
 
SettlingTime: 17.5024 
 
Min: 0 
 
MinTime: 0 
 
Max: 1.1861 
 
MaxTime: 7.5500 
 
>> 
 
The achieved results show that a simple proportional controller KsR =)(  would not be able to meet 
the required performances of Eq. (10). In fact, if the scheme of Figure 5 is considered, by using 
again the root locus of , the best achievable value of the settling time  can be obtained, as 
remarked in the following. 

)(sG aT
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Figure 5: Proportional controller for the DC motor model described by . )(sG

 



The best value of  is thus obtained by selecting the gain aT K  corresponding to the point 
highlighted in Figure 6, i.e. the break out point of the root locus of . )(sG
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Figure 6: Root locus for the selection of the constant gain K . 

 
>> rlocus(Gs) 
 
>> K=rlocfind(Gs) 
 
Select a point in the graphics window 
 
selected_point = 
 
  -0.2228 - 0.0169i 
 
K = 
 
    0.2257 
 
>> 
 
The corresponding value of the gain is 2257.0=K , and the response of the system is depicted in 
Figure 7. In these conditions, the response of the system is the same of a first order model, 
described by the relation of Eq. (13): 
 



τ/1)( tety −−=       (13) 
 
where τ  corresponds to the ‘dominant’ time constant (dominant pole) of the closed-loop system 
depicted in Figure 5. The dominant pole can be determined by means of the following relations: 
 
 
>> Grk=K*Gs/(1+K*Gs) 
 
Transfer function: 
               5.015 s^3 + 501.5 s^2 + 223.7 s 
------------------------------------------------------------- 
s^6 + 200 s^5 + 1.009e004 s^4 + 8927 s^3 + 2492 s^2 + 223.7 s 
 
>> [numGrk,denGrk]=tfdata(Grk,'v') 
 
>> roots(denGrk) 
 
ans = 
 
         0 
  -99.5541 
  -99.5536 
   -0.4481 
   -0.2240 
   -0.2236 
 
>> 
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Figure 7: Response of the approximate 1st order system with proportional gain K . 

 
Therefore, the approximate value of the settling time  (aT %5± ) is given by the relation of Eq. (14): 
 



σ
3

≅aT       (14) 

 
where σ  is the real part of the ‘dominant’ pole shown in Figure 6. In this case: 
 
>> Ta=3/0.22 
 
Ta = 
 
   13.6364 
 
>> 
 
Of course, this value would be the exact settling time of the response, if the overall system were 
described by a 1st order model. However, in order to determine the actual value of the settling time, 
the scheme of Figure 5 leads to the following results: 
 
>> lsiminfo(ync,t) 
 
ans =  
 
    SettlingTime: 26.0718 
             Min: 0 
         MinTime: 0 
             Max: 1.0000 
         MaxTime: 60 
 
>> 
 
As already remarked, the achieved results show also that a simple proportional controller KsR =)(  
is unable to compensate the considered system in order to obtain the required performance. In 
particular, the settling time cannot be further reduced to meet the requirements. Therefore, the 
control strategy proposed in this lecture has to rely on a dynamic controller, and in particular on a 
phase lead network, since  has three poles. Therefore, the following phase lead network  
is proposed: 

)(sG )(sR

 

1501
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)( s

s
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In this way, the choice of the pole of , )(sR 150−=ps , does not modify the asymptotic 
development of the root locus of , whilst its zero )(sG 10−=zs  is properly selected to suitably 
modify the development of the root locus closest to the imaginary axis. The MATLAB code below 
defines the phase lead network for 1=K : 
 
>> s=tf('s') 
 
>> Rs=(1+s/10)/(1+s/150) 
 
>> [numRs,denRs]=tfdata(Rs,'v') 
 
The closed loop gain function  is defined in MATLAB as: )()()( sGsRsGa =
 



>> Ga=Rs*Gs 
 
whose root locus is depicted in Figure 8. 
 
>> rlocus(Ga) 
 
Figure 8 highlights how the root locus is ‘attracted’ by the zero placed in , thus leading to 
decrease the overall settling time, as depicted by the vertical blue line corresponding to the points 
with constant , and described by the relation of Eq. (16): 

10−=zs

aT
 

n
aT

ωδσ
33

==       (16) 

 
With respect to the uncontrolled system , Figure 8 shows the advantages of the use of the 
proposed phase lead network of Eq. (15), which leads to improve the achievable settling time. In 
fact, the ‘deformation’ of the root locus of  due to the attraction effect of the network zero 
reduces the settling time of the closed loop system, depending on the choice of the network DC gain 

)(sG

)(sGa

K . As the modified root locus is able to increase the absolute value of the real part of the poles (σ  
or nωδ ) by changing the value of K , this reduces the corresponding value of the settling time , 
as highlighted by the relation of Eq. (16). 

aT

-150 -100 -50 0 50

-200

-150

-100

-50

0

50

100

150

200

Root Locus

Real Axis (seconds -1)

Im
ag

in
ar

y 
A

xi
s 

(s
e

co
n

d
s-1

)

 
Figure 8: Root locus of the transfer function )()()( sGsRsGa = . 

 
On the other hand, by considering again the root locus of , the locus of the points with 
constant damping factor 

)(sGa

δ  can be obtained from the following MATLAB code: 
 
>> rlocus(Ga) 
 
>> sgrid 



 
The plot is depicted in Figure 9. In particular, the MATLAB command sgrid generates the s-
plane grid lines for the considered root locus or pole-zero map. In this way, it generates the required 
grid over the existing continuous s-plane root locus. The lines of constant damping ratio δ  and 
natural frequency nω  are thus drawn, as shown in Figure 9. 
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Figure 9: Root locus of  with constant damping ratio )(sGa δ  and natural frequency nω . 

 
Moreover, Figure 10 shows the detail of Figure 9 for the required values of 3.0≥δ . 
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Figure 10: Detail of the root locus for the required values of 3.0≥δ . 

 
By means of the use of the command rlocfind, a tentative value of the gain K  can be 
determined with the crosshair cursor selected with the mouse for a pole of the root locus of  
near to 

)(sGa

3.0≥δ . 
 
>> K=rlocfind(Ga) 
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Figure 11: Tentative value of the gain K . 



 
Select a point in the graphics window 
 
selected_point = 
 
 -19.6907 +62.0544i 
 
 
K = 
 
  2.9492e+003 
 
>> 
 
By reducing the simulation time to 5s, the characteristics of the transient response of the controlled 
system are reported in the following, obtained again by means of the command lsiminfo: 
 
>> lsiminfo(yc,t) 
 
ans =  
 
    SettlingTime: 0.1946 
             Min: 0 
         MinTime: 0 
             Max: 1.4813 
         MaxTime: 0.0569 
 
>> 
 
It can be noted that the settling time requirement is now verified ( sTa 5.0< ), but the maximum 
overshoot  is higher than 48%. In general, the settling time  decreases (↓ ) by increasing ( ) 
the proportional gain 

%S aT ↑

K , whilst the maximum overshoot  decreases (↓ ) when the proportional 
gain 

%S
K  is reduced ( ). These general ‘meta-rules’, which can be exploited for the design of a 

phase lead or lag network, are summarised in Table 1. 
↓

 
Table 1: Meta-rules highlighting the relation between gain, settling time and maximum overshoot. 

K  ↑  ↓  
aT  ↓  ↑  
%S  ↑  ↓  

 
In this case, as the actual maximum overshoot is higher than required ( ), the network 
gain 

%48% ≥S
K  has to be reduced. A second tentative value is thus selected, 2000=K , smaller than the 

previous value, by using a trial and error procedure. 
 
>> K = 2000 
 
K = 
 
        2000 
 
>> lsiminfo(yc,t) 
 
ans =  



 
    SettlingTime: 0.2383 
             Min: 0 
         MinTime: 0 
             Max: 1.3824 
         MaxTime: 0.0747 
 
>> 
 
Also for this value, the settling time is verified ( sTa 5.0< ), but the maximum overshoot is too large 
( ). A further and lower value of the gain %35% >S K  is thus tried: 
 
>> K = 1500 
 
K = 
 
        1500 
 
>> lsiminfo(yc,t) 
 
ans =  
 
    SettlingTime: 0.2379 
             Min: 0 
         MinTime: 0 
             Max: 1.3335 
         MaxTime: 0.0802 
 
>> 
 
which finally allows to satisfy the required performances, i.e.  and 

. This concludes the design of the phase lead network. 
ssTa 5.024.0 >≅

%35%33% <≅S
 
The final response of the closed loop system implemented in Simulink as sketched in Figure 12 is 
shown in Figure 13. 
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Figure 12: Overall Simulink scheme of the controller design. 
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Figure 13: Response of the controlled system and its reference signal. 
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