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Learning Goal: 

To fit concentration profiles measured in natural minerals to extract timescales (durations) of processes that occurred at constant temperature (e.g. processes in volcanic systems at high temperatures, which were then quenched rapidly with little or no modification during cooling).

Learn to use MATLAB to write numerical methods for modeling diffusion profiles.

The Background. Here we will use the diffusion coefficients for olivine to determine the duration of magmatic processes that are inferred to have occurred beneath Kīlauea Volcano (Hawai‘i). These crystals have previously been modeled and the data are published in Lynn et al. (2017).

The Data. The file MATLABPractical.xlsx contains the data.

Diffusion coefficients to be used come from the studies of Dohmen and Chakraborty (2007a, 2007b) and can be calculated using the following equation:

				Eq. 1


where [image: ] is in m2/s, T is in Kelvin, P and fO2 are in Pa, XFe is equivalent to the molar fraction of fayalite in the olivine (i.e. XFe = 1 in fayalite and XFe = 0 in forsterite). 

For the purposes of this exercise we will be modeling FeMg diffusion as though it were non-concentration dependent. Assume that the diffusion coefficient is constant across the profile. To account for the compositional dependence, use the average XFe along the EPMA profile data and use this single diffusion coefficient for your model.

Diffusion along the a- and b-axes are a factor of 6 slower (i.e., anisotropic diffusion).
A modified diffusivity along each analytical traverse may be obtained using:

			Eq.2

where α, β, and γ are the angles between the traverse direction and the a-, b- and c- crystallographic axes of olivine, respectively. These have been calculated for you and are provided in the Excel table. Concentration profiles as well as element maps, BSE images and other information (e.g. inferred temperature from geothermometry, fO2 conditions of the melts, crystallographic orientations along which the concentration profiles were measured) of the olivine are also provided in the Excel table.

These Kīlauea olivine profiles are examples of simple zoning. The gradient of Fe-Mg is zoned in one direction, increasing toward the rim for reversely zoned crystals and decreasing toward the rim for normally zoned crystals. Simple zoning like this represents one magmatic process (e.g., one mixing event).

The Assignment. The following set of instructions is meant to guide you as you write your first MATLAB script for a 1D diffusion model. The beauty of writing code is that there are many ways to accomplish a single task. Use your best judgement to complete the steps below. You may compare with a partner. 

(a) For each olivine in the problem set, build a MATLAB script to model the diffusion timescale. First you should create variables for the model using the provided analytical data. Create one variable called “x_EPMA” with the distance in μm, and another variable called “FeMg_EPMA” with the compositional data. You will fit your model profile to these data to find the timescale. 
(b) Next you should create your initial and boundary condition variables. Start with a new variable “x” that will be the distance in the model. Your ∆x should be no smaller than your analytical data. Create a “FeMg_initial” variable that contains your initial and boundary conditions at t = 0. Do this following the same methods from previous Excel assignments.
(c) Define the constants that go into the model. These include temperature, pressure, oxygen fugacity, the ideal gas constant, and your orientation information α, β, and γ.
*HINT: Make sure you convert all constants into the proper units.
(d) Remember that in this exercise we are simplifying DFeMg to be non-concentration dependent. Calculate DFeMg using Eq. 1, your pre-defined constants, and the average XFe from the “FeMg_EPMA” variable. This is the diffusion coefficient along the c-axis, but diffusion is 6 times slower along the a- and b-axes. In two more lines of code, calculate Da and Db.
(e) Using the EBSD data provided in the Excel sheet, calculate the Dtrav using Eq. 2.
(f) Next define your R condition, the stability criterion: 
R = 									Eq. 3
where D is the diffusion coefficient (in our case, Dtrav), t is time in seconds, and x is the spacing between the analyses in μm. Rearrange Eq. 3 so that you determine the size of the time step (∆t) that you can use to do these calculations given the step size of the measured concentration profile. Remember that R must be between 0.3 and 0.5.
(g) Define the total duration of modeled diffusion and the total number of timesteps to complete the model. 
(h) Now we start to build the matrix that will host our model results. Define a matrix of zeros that is the length of your distance variable and can store the total number of timesteps in the model. Call this variable c_new_all_Fo.
(i) Because we will integrate the model through time, we need to pre-define what the first “old” values will be. Define “c_old_Fo” as your “FeMg_initial” variable. Similarly, we need to define the first set of “new” values. Define “c_new_Fo” also as the “FeMg_initial” variable.
(j) Now we are ready to set up our for loop! We will use a nested for loop because we calculate diffusion through time (t) and over distance (x). 
a. Define the first loop through the length of your “timesteps” variable you created above in step (g). We want to redefine “c_new” at the beginning of each loop. Make sure that the “c_old” from the previous loop becomes the “c_new” of the next loop.
b. We also want to loop through the length of the profile, which is the nested loop based on our variable x. We use finite differences and the following form of Fick’s second law (Crank, 1975):
 
where Ci references the “c_old” variable, D is our constant Dtrav, and ∆t and ∆x as defined in step (f) above.
*HINT: Remember from our previous Excel exercises that you cannot use this equation at the first and last points in your profile. How can you write your for loop definition to avoid this issue?.
(k) Now its time to close our for loops. After the nested loop we have calculated a new profile of compositions. Make sure to save this new profile as your “c_new” variable. Also save your “c_new” profile into the matrix of empty zeros we built in step (h). After you have saved these variables, close the second for loop.
(l) Now it’s time to plot our data! Remember our basic figure making commands from the “MATLAB Crash Course” lab a few weeks ago. Create a figure that plots the “c_new” model results as a line. Plot also the measured EPMA data variables from the Excel sheet. Make these data plot as green circles. Create a title for this figure that has the sample name. Add a legend distinguishing your model data from your EPMA data. 

Thought questions:
1) Diffusion is a highly temperature dependent process. What happens to your calculated timescale if you increase temperature by 100°C? What if you decrease the temperature by the same amount? Why do you think this is? 
*Hint: Remember what we learned about diffusion coefficients



2) The timescale you calculate is not a unique answer to the problem because many of the modeling input parameters have uncertainties. For example, temperature was calculated using the Helz and Thornber (1987) glass MgO thermometer, which has an associated uncertainty of ±10°C. If you take into account the temperature uncertainty, what is the range of possible timescales to fit the given profiles?






3) In this exercise you were given the orientation data that tells you where your profile is with respect to each crystallographic axis. What if you weren’t given that data? How would you model the profile, and what would the uncertainty on that result be?







4) This MATLAB script should be versatile enough to apply to other zoned profiles. What efforts can you make to streamline revising this script to fit other problems?
*HINT: Think about the constants that are given (T, P, fO2) and the units that are needed compared to the typical units of your geologic data. 









Data Visualization
Go back to your script – we are going to add a simple line of code to enhance the visualization of our diffusion data. Our figure will now use our “c_new_all” matrix variable and the EPMA data with the legend specifications as listed above. This time, move the figure plotting commands into the outer for loop, just prior to your final “end” comment. Instead of plotting “c_new” plot “c_new_all”, and at the end of the line of code insert the command “waitforbuttonpress.” This will allow you to click through each of the timesteps you have calculated, showing the progressive diffusion you have modeled as the model runs.
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