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NEURONAL PASSIVE PROPERTIES

Objectives: By the end of this exercise, students will be able to:

• Explain how, using a mathematical model, resistance and capacitance shape neuronal responses to
injected current

• Explore the similarities between the model of a neuron and its equivalent circuit representation.

Précis:

The purpose of this exercise is to give you an opportunity to explore perhaps the simplest model of a
neuron: a leaky integrator. Its utility is its lack of active properties; that’s correct: the model neuron
does not contain voltage-dependent ion channels that are used to generate action potentials; instead, the
model mimics the passive behavior of a neuron.

Equivalent Circuit Representation of a Neuron

The neuronal membrane acts as a capacitor: Like all cells in the body, neurons have a phospholipid
bilayer. The lipid bilayer consists of ampipathic phospholipids [1]. Ampipathic refers to compounds that
have both hydrophilic (water-loving) AND lipophilic (fat-loving) properties. The hyrdophilic portion of
the phospholipid is the phosphate group; the lipophilic portion is the lipid portion of the molecule.
Because of this, ions cannot pass through the lipid bilayer; their charges cannot interact with the
non-charged lipid portion of the bilayer. Therefore we can say that the membrane separates ions in the
extracellular space from ions in the intracellular space.

It is this separation of charge that confers upon the membrane the physical concept of a Capacitor. In
the electrical sense, a capacitor is a device that consists of two plates which allow charge to move that are
separated by an insulating material. In this case, the phosphate groups on the extra/intra cellular face of
the neuron’s membrane are the plates, and the lipid portion, in which ions cannot pass, acts as the
insulating material. This leads to the other definition of a capacitor: as a device that stores charge. As
charges build up on either side of the capacitor, they interact with each other, producing a voltage
difference (difference in charge) between the plates. This difference in charge can be quantified by the
Capacitor Equation:

Q = C · V (1)

Where Q is the amount of charge stored, C is the Capacitance (a constant, and V is the Voltage. This
equation says that as the amount of Capacitance changes, the amount of charge stored changes, and thus
the potential difference between the plates of the capacitor changes. How does this relate to the
membrane? As charges (Q) align themselves on either side of the neuronal membrane, a potential (V ,
i.e., the membrane potential) arises between the inside and outside of the neuron. Because the amount of
the cell membrane does not change dramatically, its Capacitance is effectively a constant in the equation
above.

Channel proteins in the membrane act as resistors: Because ions cannot cross the membrane,
they require passages through the membrane that allow them to move from the extracellular space to the
intracellular space, or vice-versa. These passages are typically proteins, embedded in the cell membrane,
called ion channels. For each ion that a neuron is permeable to, there will be an ion channel of some type
that will facilitate the movement of that ion. These channels are of different classes, depending on the
mechanism that ”gates” their ability to allow ions to pass. For example, the class of channels that will be
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the focus of this exercise are called ”leak channels” because they are always open and therefore always
allow ions to move (or ”leak”) through them.

Because ions have different properties (e.g, atomic radius), the ion channel proteins that allow them to
move across the membrane must also be specific for the ionic species that they allow to move through
them. This, then, confers upon them the physical concept of a Resistor [2]: they resist the movement of
ions through them. In the electrical sense, a resistor is a device that impedes electrons from moving down
a wire. In the same way, for an ion channel embedded in the membrane of a neuron, the specificity of
that channel for a particular ion means that it can impede the movement of ions across the membrane.

Because ion channels can selectively allow ions to move through them, this allows them to produce
changes in charge between the intracellular and extracellular space of the neuron. This movement of
charge can also contribute to a voltage difference between the inside/outside of the neuron. This
difference can be quantified by Ohm’s Law:

V = I ·R (2)

Where V is the voltage, I is the current, and R is the resistance (for the channels we discuss in this
exercise, this is a constant). This equation says that as the amount of Resistance changes, the current
flowing through the resistor changes, and thus the voltage changes. How does this relate to the
membrane? Channels inserted into the membrane impart a resistance to current flow (i.e., ion movement)
between the inside and outside of the neuron. This movement of ions generates a current flow (I) that
produces a change in Voltage between the inside and outside of the neuron.

Derivation of the Model:

The model neuron is based on the following equivalent circuit, with an electrode used to pass current into
the neuron:

Rm

Out

Cm

I inject
In

Figure 1: Equivalent circuit model for a passive cell

where Cm represents the membrane capacitance in Farads (F; we will use SI units), and Rm is the
membrane resistance in Ohms (Ω). We will then inject a current I inject, at the point “In” on the circuit
(“Out” represents the path to ground). I inject has SI units of Amperes (A). Current injected into this
cell flows across the two arms of the circuit. According to Kirchoff’s Law, the current(Iinject) injected into
the cell (at the point “In”) must be equal to the current flowing along the two branches of the circuit
(i.e., the current flowing through the resistor and across the capacitor) of the cell. We define this for the
model by the following equation:

I inject = C
dV

dt
+
V

R
(3)
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We solve this equation for C dV
dt and get (verify this for yourself):

C
dV

dt
= I inject −

V

R
(4)

This is the “Current Balance Equation” for the passive neuron model. It says that the rate of change in
voltage is equal to the current flowing through the ion channels (R) plus the current injected. How do
these relationships arise?

The term on the left arises from the Capacitor Equation above. Taking the derivative of both sides of the
Capacitor Equation (NOTE: C is a constant, and therefore doesn’t change) yields:

dQ

dt
= C

dV

dt
(5)

dQ
dt is, by definition, a current (i.e., the rate of change in charge, Q). Therefore, the first term represents
the capacitor current. Reminder: current does not flow through a capacitor; rather, the deposition of
charge on one side of the capacitor repels like charges away from the other side of the capacitor. In the
context of a neuron, this represents depositing charge on the intracellular face of the membrane; this
charge repels like charges away from the extracellular face of the membrane.

For the last term on the right: we start with Ohm’s Law from above. Solving for I yields:

I =
V

R
(6)

Therefore, this term represents the current flowing through the resistor. Unlike a capacitor, electrons do
flow through a resistor. In the context of a neuron, this represents the flow of ions through ion channels
of different types (e.g., leak channels, gated channels, etc.).

Taken together, in terms of the equivalent circuit developed above, the current balance equation says
that, in response to a constant current injection, the membrane potential will change until it reaches a
particular voltage. We will call this voltage the Steady-State Voltage (V∞). The goal of today’s exercise
is to explore how the membrane Capacitance (Cm) and resistance (Rm) contribute to:

1. the V∞ the cell reaches in response to the injected current

2. the time course of the voltage change

In this exercise, we will look at the impact of R and C on V∞ and how, using this simple model, we can
actually determine V at any time t.

Exercises

Running the Model in Matlab

Open Matlab on your computer. Double-click on the file called passive.m. This code executes the
model. Take a moment to familiarize yourself with the different components of the code. NOTE: You
should NOT change anything below line 19 (it says NOTHING TO CHANGE BELOW THIS LINE).

In the following, text you type at the keyboard is typeset like this; answers given by Matlab are
typeset like this; comments in Matlab code are typeset like this.
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Exercise 1: Effect of Capacitance on the Steady-State Voltage

In this first exercise, we will explore what effect changing the capacitance of the cell has on the voltage
that is reached for a given amplitude of current injection. How could you change a cells capacitance. If
the membrane itself acts as a capacitor, discuss the relationship between changes in capacitance and the
surface area of the cell. Enter your answer below:

For this initial set of simulations, you will only be changing the capacitance. This is done by changing line
7 in the Matlab code (should say Cm=1e-9, which means Cm=10-9). For this first run, leave this value at
1e-9. Please be sure to note the following parameters for input resistance (Rm) and current injection
(Iinject). Can you put these values into “physiological units” (for example, 1e-3V is equal to millivolts):

Cm=1e-9

Rm=10e6

Iinject=-1e-9

Now to the simulation. Make sure line 7 in the code (Cm) is reset to 1e-9. Check that the following lines
in the code are set to these values:
%% Define Stimulus Parameters

10 Iinject=-1e-9; % current amplitude (A)

11 tend=1; % length of simulation (s)

12 tstimstart=0.1; % time to start current injection (s)

13 tstimend=0.6; % time to end current injection (s)

%% Define Plot Axis

15 ylo=-inf; % Sets the y-axis lower limit; sometimes set @ -0.075;
16 yhi=inf; % Sets the y-axis upper limit; sometimes set @ -0.050;

%% Fit the Data

18 fitter=0; % if you want to fit the data enter 1, otherwise leave at 0

(NOTE: The text in green is called a “comment.” A % sign tells Matlab to ignore the following text)
Hit the “Run” button located in the top ribbon of the program window. It should produce the following
plot:
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Figure 2: Matlab figure window showing Vm of the passive cell (Black trace) in response to injected current,
I inject (red trace)

Take a moment to familiarize yourself with what you are looking at. The red line represents the current
injected (the current has been scaled so that it fits on the plot). The black line represents the voltage
deflection. Note that, at the beginning of the trace, the resting membrane potential is ”-60mV (or -0.06 V
in SI units)”. This is set in line 6 of the Matlab script (El=-60e-3).

Has the voltage reached a steady-state (i.e., no longer changing)?

What is the value of the voltage at the moment the current trace turns off? Matlab will tell you what the
minimum voltage is in the ”Command Window” just below the code (The voltage at the end of the

current injection was).

To explore the figure, you can select the magnifying glass to zoom in on the plot. Hold and drag the
magnifying glass across the voltage trace as it reaches steady state. To restore the original view, simply
double click anywhere in the white figure area.

Now, change line 7 to 2e-9, and re-run the code. What is the steady-state voltage deflection? Repeat for
Cm values (do not change the e-9 part of line 8) of 3, 4, 5, 10, and 20. Record your steady-state voltage
deflections (i.e., deviation from resting membrane potential) in Table 1 (You’ve just run the simulation
for Cm=1):

Cm (·10-9F) V∞ ∆V : V rest − V∞
1

2

3

4

5

10

20

Did you reach a steady-state voltage for each value of Cm?

Is there a change in the steady-state voltage? Would you expect there to be? Why or why not?

What do you notice about the time course (i.e., the time required to reach 63% (or 1-e-1) of the
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steady-state voltage) of the voltage-change as you increase Cm?

Exercise 2: Effect of Input Resistance on Steady-State Voltage Deflection

Now, we will only be changing the resistance. Make sure line 7 in the code (Cm) is reset to 1e-9. Change
the following lines in the code (note the semicolon):
11 tend=1;

12 tstimstart=0.1;

13 tstimend=0.6;

15 ylo=-0.250;

For this set of simulations, you will be changing “Rm” on line 8. Run the code for each of the following
values of Rm: 10, 20, 30, 40, 50, 100, 200. Record the steady-state value (if reached) for each value of Rm

in Table 2.

Rm (·106 Ω) V∞ ∆V : V rest − V∞
10

20

30

40

50

100

200

Did you reach a steady-state voltage for each value of Rm?

Is there a change in the steady-state voltage? Why or why not?

What do you notice about the time course (i.e., the time required to reach 63% of the steady-state
voltage) of the voltage-change as you increase Rm?

Exercise 3: Effect of Capacitance on Membrane Time Constant

Until this point, we have focused primarily on the steady-state voltage reached in response to the current
injection. Here we want to look at the time course of the change in voltage. All circuits such as that
shown in Figure 1 can be characterized by a parameter called the time constant (τ .) It is defined by the
following equation:

τ = Rm · Cm (7)

This equation determines the time it will take for the voltage to reach ≈ 63% of its steady-state value in
response to a current injection. τ is one of the fundamental measurements you can make of a neuron,
because it will give you a sense of how long it takes for a neuron to reach threshol, or the membrane
potential at which a neuron will generate an action potential.

What are the units of the time constant? The SI unit for Ohms is: Ω = V olt
Ampere and for Farads is:

F = Coulomb
V olt . In the space below, see if you can determine the units (hint: Ampere is Coulomb

s .) Please
check with an instructor before continuing.

Page 6 of 9



SERC Matlab Workshop
2018

To quantify the effect of Rm and Cm on the time constant we will compute the time constant ourselves,
then run a simulated “experiment” to verify the theoretical description of this circuit.

We will use Matlab to perform the simulations, then fit the data to determine the actual time constant of
our cell. To do this, you will need to make the following changes to the code (number indicates the line #
in the code to change):

11 tend=0.5;

12 tstimstart=0;

13 tstimend=0.5;

15 ylo=-inf;

16 yhi=inf;

18 fitter=1;

Don’t forget the semicolons.
In the table below, enter your values for the time constant, based on the following Cm values (leave Rm

at 10e6; don’t forget the units!)

Cm (·10-9F) Calculated τ Fitted value of τ

1

2

3

4

5

10

20

Run the code for each value of Cm. Did your theoretical results match with the fitted results?
Now repeat the exercise for different values of Rm (change Cm back to 1e-9).

Rm (·106 Ω) Calculated τ Fitted value of τ

10

20

30

40

50

100

200

Run the code for each value of Rm. Did your theoretical results match with the fitted results?

Conclusions

What can you conclude about the effect of membrane capacitance on V∞? The time course of voltage
changes?

What can you conclude about the effect of membrane resistance on V∞? The time course of voltage
changes?
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Appendix: Solution to the Current Balance Equation

Here we want to develop an intuition for what the ”Current Balance Equation” tells us by deriving a
general solution for this equation. As you will see, we can use this intuition to understand how
conductance-based models work.
We begin with equation 4 above:

C
dV

dt
= I inject −

V

R
(8)

Multiply both sides by R to get:

RC
dV

dt
= RI inject − V (9)

R · C, as you recall, is the definition of τ the time constant:

τ
dV

dt
= RI inject − V (10)

Note that, in this form, all of the relevant terms on the right-hand side of the equation are in Volts (in
the derivation section above, the terms were in Amps). This equation says that the rate of change of V is
equal to V itself. We would like to know V at any given time, not dV

dt . In practice, this can be very
difficult. In this case, however, we can generate a solution. What we can do is imagine the situation
wherein V is not changing. In this specific case, dV

dt becomes 0:

0 = RI inject − V (11)

We call this instance (when V is not changing), the Steady-State Voltage. We can now solve for V :

V = RI inject (12)

This equation says that V will be equal to R · I inject. This is key! It says that, at steady state, V will be
equal to Ohms Law! We designate this V as V∞ :

V∞ = RI inject (13)

We can now plug this new term into 10 above:

τ
dV

dt
= V∞ − V (14)

It is this general equation that lies at the heart of most, if not all, conductance based models. Dividing
by τ yields:
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dV

dt
=
V∞ − V

τ
(15)

What this equation says is that V will approach its Steady-State value at a rate proportional to the time
constant, τ . Taken together, if you can determine V∞ (WAY EASIER SAID THAN DONE ) and τ , you
can use this equation to determine V 1 at all times.

Equations of this form have the general solution

V (t) = V∞ − (V∞ − V 0)e
−t
τ (17)

How to parse this equation? I find it useful to take the limits of time (aka ”boundary conditions;” that is,
when t=0 and when t = ∞.)

• t = 0. In this case, the term e
−t
τ becomes e

0
τ , which is e0, which is one. Equation 17 becomes:

V (t) = V∞ − (V∞ − V 0), (18)

which is V 0, or the membrane potential from which you start.

• t =∞. In this case, the term e
−t
τ becomes e

−∞
τ , which is e−∞ (because the ∞ term � τ) , which is

zero. Equation 17 becomes:

V (t) = V∞ − (V∞ − V 0) · 0, (19)

which is V∞, or the steady-state voltage reached after an infinite amount of time.

In the Hodgkin-Huxley model, V∞ is joined by variables for the in/activation gates that govern the
dynamics of ion channels that are present in the membrane.
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1For most conductance-based models, you typically see equations like these in the following format for a given variable(
in/activation gates, e.g.

)
dX

dt
=
X∞ −X

τX
. (16)
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