
Newton-Rhapson Method

 1

Background: Your coworker has taken several volume measurements of a gas at various temperatures. The
measurements all correlate to odd order polynomials (i.e. 1st, 3rd, 5th…), and your coworker has already fit these
polynomials to the data. She now needs your help creating a program to find the volume of the gas when the

temperature is at 0C. You will be provided with the coefficients for the polynomial fit, and need to solve for the volume
at the correct temperature.

Knowing that all odd order polynomials have at least 1 real root (roots are values where the equation is equal to zero),
you have decided to use the Newton-Rhapson method to find the root. Your code should be flexible to work for any odd
order polynomial. A simple tutorial of the Newton-Rhapson method can be found at:
http://www.sosmath.com/calculus/diff/der07/der07.html#answer1.

Some examples of the polynomials your coworker has provided (you could be given higher order polynomials as well):

1st order polynomial 𝑇(𝑉) = 𝐶1𝑉 + 𝐶2

3rd order polynomial 𝑇(𝑉) = 𝐶1𝑉3 + 𝐶2𝑉2 + 𝐶3𝑉 + 𝐶4

5th order polynomial 𝑇(𝑉) = 𝐶1𝑉5 + 𝐶2𝑉4 + 𝐶3𝑉3 + 𝐶4𝑉2 + 𝐶5𝑉 + 𝐶6

Newton-Rhapson Method: 𝑉𝑛 = 𝑉𝑛−1 +
𝑇(𝑉𝑛−1)

𝑇′(𝑉𝑛−1)

Assumptions:

• The user will always enter the coefficients as a vector ([C1 C2 … Cn])

• Each polynomial only has 1 real root.

• Helpful functions for working with coefficients of polynomials: polyval, polyder

Coding Requirements:

• Include required documentation and header for the problem and clearly label tasks with comments in your
code.

• All output to the command window should be formatted (not unsuppressed output).

• Review the rubric for a description of test cases and a sample output.

TASK 1:
Ask the user to enter a vector of coefficients for the polynomial model. Verify that the entry has an even number of
elements (an odd number of elements would mean an even order polynomial). If an incorrect vector is entered, ask the
user to re-enter the vector until an appropriate vector is entered. If the user fails to enter an acceptable vector after 5
attempts, your code should display a warning and simply remove the last element of the last vector entered. (i.e. [1 2 3 4
5] becomes [1 2 3 4]).

TASK 2:
Ask the user to enter a starting value for the Newton-Rhapson method. The Newton-Rhapson method is an iterative
method that gets increasingly accurate with each successive iteration. Repeat the method until the percent change
between the last two iterations is less than 1%. The percent difference formula is:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |
𝑉𝑛 − 𝑉𝑛−1

𝑉𝑛−1
| ∗ 100

http://www.sosmath.com/calculus/diff/der07/der07.html#answer1

Newton-Rhapson Method

 2

TASK 3:
Output the final value of the root found by the Newton-Rhapson method and the number of iterations it took to
converge to that value as shown in the sample output. Ask the user if they would like to find the roots for another
polynomial. If yes, repeat the entire program; if no, the program should end (This is not shown in the sample output).

NOTE: After the output for the entered polynomial, the user should always be given the option to repeat the program.
The program should only end once the user has stated that they do not want to enter another polynomial.

Sample Output to Command Window:

Given the 1st order polynomial: 𝑇(𝑉) = 5.4 𝑉 − 37

Given the 3rd order polynomial: 𝑇(𝑉) = 𝑉3 + 2.6 𝑉2 − 17.8

Given the 5th order polynomial: 𝑇(𝑉) = 0.2 𝑉5 + 0.5 𝑉4 + 3.1 𝑉2 + 2.15 𝑉 − 67.3

