
1 |1 7

Modeling Rocket Flight Trajectory

Abstract

This problem is a computational problem solving. Computational problem solving often
involves applying a consistent and structured approach to solving problems. As essential as
problem solving is, several approaches are combined that will lead to the final solution. However,
problems must be approached methodically, applying algorithms or step by step procedure by
which one arrives at a solution. In this classroom activity, the students will develop a model to
determine the time of flight of rocket missile launch from the surface of the earth and distance
travelled when the rocket returns to the ground. To explain the problem in a clear way, the student
will write MATLAB codes to calculate the range that a rocket missile would travel when it is
launched with an initial velocity of 20 m/s at an initial angle of 𝜃. Calculate this range for all angles
between 0° and 90° in steps of 1° degree. Determine the angle that will result in the maximum
range of the rocket. Plot the trajectory of the rocket missile for angles between 10° and 90° in 1°
increments. Plot the maximum-range trajectory in a different color and with a thicker line. Assume
that the atmospheric air has no effect on the trajectory of flight. Furthermore, the flight of a rocket
launch can be confronted with real world situations. The Saturn V rocket used in the Apollo 11
spacecraft was employed to provide better understanding of a real-life scenario. The methodology
makes use of the second order differential equation to model the Saturn V rocket launch. The
rocket can be modelled using MATLAB codes including its position, time derivatives, velocity
and acceleration.

1.0 Introduction

The computation of rocket trajectories is mainly done using purely numerical methods that will
take charge of all the relevant parameters and yield the desired end product results. A demand for
analytical methods that can offer more explicit the effect of the various rocket’s atmospheric
parameters of the trajectory that can be utilized as test cases with infinite accuracy. An analytical
method can also be used. The analytical techniques consider the following: (1) propellant
consumption resulting from variable rocket mass; (2) nonlinear aerodynamic forces proportional
to the square of the velocity; (3) exponential dependence of the mass density with altitude for an
isothermal atmospheric layer. A research paper [1] proposes four analytical methods of calculation
of rocket trajectories in an isothermal atmospheric layer using new exact solutions of the equations
of motion. The proposed methods are developed for the simpler case of a vertical climb and will
then be extended to the more practically case scenario of a gravity turn.

UC Rocketry is a rocket research group developed by the University of Canterbury (UC). The
rocket has broken the world altitude record for an I-class motor, an achieved impulse of 320-540
Ns. The university has run the rocketry course for the first time in New Zealand. The research
paper presented the development and results of the world record rocket namely, Milly. In addition,
detail fundamental elements of the rocketry final year engineering course were provided. These
include; manufacturing process; wind tunnel testing; avionics and control. Furthermore, a final
rocket launch called Smokey was provided. The two rockets Milly and Smokey are used as an
example of the design, implementation and testing processes. This development paradigm has
immensely contributed to the graduate space program research in New Zealand [2].

2 |1 7

In another development, a customized vertical wind tunnel was built by the UC Rocketry space
program research group. This development has been critical for the success of the UC Rocketry as
it lets the optimization of avionics and control system parameters for an earlier flight. The research
paper summaries the construction of the wind tunnel and includes an analysis of flow quality
including swirl. In addition, a minimal modelling methodology for roll dynamics was developed.
This methodology can extrapolate wind tunnel behavior at low wind speeds in relation to much
higher velocities encountered during flight. The outcomes demonstrate the models get the roll
flight dynamics in two rocket launches with mean roll angle errors fluctuating from 0.26 to 1.5
points across the flight data ranges. A predictable fluctuation on wind tunnel tests and flight,
including canard-fin interaction behavior are presented in the model parameters. The presented
results prove that the vertical wind tunnel is a significant tool for the modelling and control of
sounding rockets [3].

The German Aerospace Center (DLR) launched a support program for students to acquire,
construct and set up their rockets in April 2012. The program goes by the acronym STERN
(STudentische Experimental-RaketeN) which is also the German word for star. The STERN was
funded by the Federal Ministry of Economics and Technology (BMWi) and conducted by the DLR
Space Administration of the German Aerospace Center DLR. The STERN program provides
aerospace engineering faculties at universities with opportunities to introduce students realistically
to subjects linked to space transport. It was envisaged that within the project time frame of three
years the soon-to-be engineers will develop their own rockets. Another important issue is that there
are no limits regarding peak altitude or the propulsion system used. The designed rockets should
have a minimal telemetry system that will transmit vital trajectory and housekeeping data back to
earth during flight and provide information to the students as well as the rocket altitude [4].

An approach for a Problem-Based Learning (PBL) experience for undergraduate students of
aerospace engineering was provided by the work of the authors in [5]. The experience affords the
students the ability to construct a model rocket using locally available materials. They also
calculate all the relevant measures to design and characterize the rocket and they examine the
hardiness of their intent. Moreover, the students launch the rocket with the matching payload and
verify the flight parameters using an on-board altimeter. Lastly, they also compare the flight
parameters with the theoretically expected values. Practicing this simple system, the students are
later presented in the simulation of complex flows, utilizing standard techniques. The authors
recognize that their students get rapidly involved in the project, permitting them to take several
practical abilities, besides making an exact knowledge of the physics of rockets and of fluid
dynamics.

The goal of the Center for Simulation of Advanced Rockets is a comprehensive simulation of
solid propellant rockets. Achieving this goal will require advancements in technical matters linked
to several scientific disciplines, in system integration, and in the computational infrastructure for
supporting such large-scale simulations. It involves a multidisciplinary team of applied scientists,
physical scientists, and computer scientists to cultivate and conduct away the necessary
mathematical models, algorithms, and software to create a virtual rocket. The authors gave an
outline approach for merging rocket design, simulation and computer science principles [6].
Another approach for teaching model rocketry in science was provided by the authors in [7].

The research work that introduces a model rocket project suitable for sophomore aerospace
engineering students has been presented. The project incorporates elements of drag estimation,
thrust determination and analysis using digital data acquisition, statistical analysis of data,
computer aided drafting, programming, team work and written communication skills. The student-

3 |1 7

made rockets are set up in the university baseball field with the objective of taking a specific
amount of payload so that the rocket achieves a specific altitude before the parachute is installed.
Throughout the course of the project, the students are ushered into real-world engineering practice
through written report submission of their design works. For several years, the project has proven
to enhance the learning objectives, provides cost effective and has proven good outcome results
[8].

The National Aeronautics and Space Administration (NASA), provides a classroom topic that
gives awesome experience in rocket design. The educator guide provides the scientific, technical,
engineering and mathematical foundations of rocketry. The guide provides exciting classroom
opportunities for authentic hands-on, minds-on experimentation to enhance the educational
experience. The activities and lesson plans contained in this educator guide emphasize hands-on
science, prediction, data collection and interpretation, teamwork, and problem-solving processes.
In summation, the guide contains background information about the history of rockets and basic
rocket science. The rocket activities in this guide support national curriculum standards for science,
mathematics and engineering [9].

A stochastic six-degree of freedom flight simulator for passively controlled high power rockets
was proposed by the authors in [10]. The research paper presented a method for simulating the
flight of a passively controlled rocket in six degrees of freedom, and the descent under parachute
in three degrees of freedom. Also exhibited is a method for modeling the uncertainty in both the
rocket dynamics and the atmospheric conditions using stochastic parameters and the Monte Carlo
method. Furthermore, the authors introduced a method for measuring the uncertainty in the
atmospheric conditions using historical atmospheric data. The center masterpiece of the simulation
algorithm is a numerical integration of the rocket’s equations of motion using the Runge-Kutta-
Fehlberg method. The location of the rocket’s center of mass is drawn using three dimensional
cartesian coordinates and the rocket’s orientation is described using quaternions. The input
parameters for the simulation process are made using stochastic process by adding Gaussian noise.
For parameters related to the atmosphere at the adjacent altitude, the correlation of the variation of
the noise is a function of altitude and noise. The main simulation algorithm with stochastic
parameters, was tested within a Monte Carlo wrapper to evaluate the total uncertainty in the
rocket’s flight path trajectory. The results of the demonstration of the simulator showed a
promising correlated value.

2.0 Problem Background

This classroom activity is a computational problem solving. Computational problem solving
often requires using a coherent and structured approach to resolving problems. For instance, a
rocket missile is launched into flight from the ground at a speed of 20 miles per second at 45o
degrees above the horizontal over level ground. Determine the time of flight and the distance
travelled when the rocket returns to the ground.

Let’s begin with the theoretical background using object motion in physics [11], [12], [13].
Suppose, we assume the negligible effect of the atmospheric air friction and ignore the curvature
of the earth, a rocket missile that is launched into the air from the surface of the earth will follow
a parabolic flight path as illustrated in Fig. 1 below. The height of the rocket at any time t after it
is launched is given by Equation (1).

4 |1 7

Fig. 1 A parabolic path movement of a rocket missile launch

Fig. 2 The horizontal and vertical components of a velocity vector v at an angle with respect to the horizontal.

 𝑦(𝑡) = 𝑦௢ + 𝑣௬௢𝑡 +
ଵ

ଶ
𝑔𝑡ଶ (1)

The parameter 𝑦௢ is the initial height of the of the rocket above the ground, 𝑣௬௢ is the initial
vertical velocity of the rocket, and g is the acceleration due to the earth’s gravity. The horizontal
distance (range) traveled by the rocket as a function of time after it is launched is given by Equation
(2).

𝑥(𝑡) = 𝑥௢ + 𝑣௫௢𝑡 (2)

The parameter 𝑥௢ is the initial horizontal position of the rocket on the ground, and 𝑣௫௢ is the
initial horizontal velocity of the rocket. Assume the rocket is launched with some initial velocity
at an angle of degrees with respect to the earth’s surface. The rocket will have the initial horizontal
and vertical components of velocity as given in Equations (3) and (4).

𝑣௫௢ = 𝑣௢ cos 𝜃 (3)

𝑣௬௢ = 𝑣௢ sin 𝜃 (4)

Herein, we assume that the rocket is initially launched from the position (𝑥௢ , 𝑦௢) = (0, 0)with
an initial velocity of say 20 meters per second at an initial angle of degrees. Write a MATLAB
script (program) that will plot the trajectory of the rocket and also determine the horizontal distance
traveled before it touches the ground. The MATLAB codes should plot the trajectories of the rocket
for all angles from 5 to 85° in 1° steps, and it should determine the horizontal distance traveled for
all angles 𝜃 from 0 to 90° in 1° steps. Lastly, it should determine the angle that maximizes the
range of the rocket and plot that particular trajectory in a different color with a bolder line.

5 |1 7

To propose a solution to this problem, an additional information is required that is, an equation
for the time that the rocket returns to the ground. At that time, we can calculate the (x, y) position
of the rocket using Equations (1) to (6). In doing this, for several times between 0 and the time that
the rocket returns to the ground, those points can be used to plot the rocket’s trajectory [13], [14].

𝑦(𝑡) = 𝑦௢ + 𝑣௬௢𝑡 + 1
2ൗ 𝑔𝑡ଶ (5)

0 = 0 + 𝑣௬௢ + 1
2ൗ 𝑔𝑡ଶ

0 = ൫𝑣௬௢ + 1
2ൗ 𝑔𝑡൯ 𝑡

The time that the rocket will remain in the air after it is launched may be calculated from Equation
(1). The rocket touched the ground at the time t, for which y (t) = 0. Recalling that the rocket will
start from ground level (y (0) = 0), and solving for, t, we can obtain Equations 5 and 6. Hence, the
rocket will be at ground level at a time 𝑡ଵ = 0, when launched, and at a time 𝑡ଶ as given in Equation
(6).

𝑡ଶ = −
2 𝑣௬௢

𝑔ൗ (6)

As stated in the problem statement, we know that the initial velocity is 20 meters per second and
that the rocket will be launched at all angles from 0° to 90° in 1° steps. Lastly, the acceleration due
to the earth’s gravity is –9.81 meters per second squared. Let’s use the computational problem
design technique and MABLAB codes to solve this problem.

2.1 Problem Definition

1. Problem statement
Precisely, the problem statement can be stated as: Write a MATLAB script to calculate
the range that a rocket missile would travel when it is launched with an initial velocity of
20 m/s at an initial angle . Calculate this range for all angles between 0° and 90° in 1°
steps. Determine the angle that will result in the maximum range of the rocket. Plot the
trajectory of the rocket for angles between 5° and 85° in 1° increments. Plot the maximum-
range trajectory in a different color and with a bolder line. Assume that the atmospheric air
has no effect on the trajectory of flight. To test the accuracy of the MATLAB program, we
run the Matlab program and view the numerical and plotted graphs.

2. Define the inputs and outputs.
The problem is already defined. Therefore, no inputs are required. The values of the
parameters 𝑣௢ 𝑎𝑛𝑑 𝜃 are known. The outputs from this program will be a table showing
the range of the rocket for each angle 𝜃, the angle 𝜃 for which the range is maximized, and
a plot of the specified trajectory.

3. Devise the algorithm.
To devise the algorithm the following steps should be followed:
i) Calculate the range of the rocket for angle 𝜃 between 0o and 90° degrees.
ii) Write a table of ranges.
iii) Determine the maximum range and write it out.

6 |1 7

iv) Plot the trajectories for angle 𝜃 between 5 and 85° degrees.
v) Plot the maximum-range trajectory.

As listed above, to calculate the maximum range of the rocket for each angle , we will first

calculate the initial horizontal and vertical velocity from Equations (3) and (4). Then, we will
determine the time when the rocket returns to earth from Equation (6). Finally, we computed the
range at that time from Equation (5).

This pseudocode creates and initialize an array to hold ranges.

for ii = 1:91

theta <- ii - 1
vxo <- vo * cos(theta*conv)
vyo <- vo * sin(theta*conv)
max_time <- -2 * vyo / g
range(ii) <- vxo * max_time

end

Next, we must write a table of ranges. The pseudocode for this step is to write heading.

for ii = 1:91

theta <- ii - 1
print angle theta and range

end

The maximum range can be found with the max function. This function returns both the
maximum value and its location. The pseudocode for this step is given below:

[maxrange index] <- max(range)
Print out maximum range and angle (=index-1)

To plot the flight trajectories, a nested for loops are used. To get all of the plots to appear on the
screen, we must plot the first trajectory and then set the hold on command before plotting any
other trajectories. After plotting the last trajectory, we must set hold off command. To perform
this calculation, we will divide each trajectory into 21-time steps and find the x and y positions of
the rocket for each time step. Then, those (x, y) positions are plotted. The pseudocode for this step
is:

for ii = 5:10:85

% Get velocities and max time for this angle
theta <- ii - 1
vxo <- vo * cos(theta*conv)
vyo <- vo * sin(theta*conv)
max_time <- -2 * vyo / g
Initialize x and y arrays
for jj = 1:21

7 |1 7

time <- (jj-1) * max_time/20
x(time) <- vxo * time
y(time) <- vyo * time + 0.5 * g * time^2

end
plot (x, y) with thin green lines
Set "hold on" after first plot
end
Add titles and axis labels

Finally, we must plot the maximum range trajectory in a different color and with a thicker line.

vxo <- vo * cos(max_angle*conv)
vyo <- vo * sin(max_angle*conv)
max_time <- -2 * vyo / g
Initialize x and y arrays
for jj = 1:21

time <- (jj-1) * max_time/20
x(jj) <- vxo * time
y(jj) <- vyo * time + 0.5 * g * time^2

end
plot (x, y) with a thick red line
hold off

4. Implement the algorithm using MATLAB codes.
At this stage, the algorithm is transformed into MATLAB codes. This is provided in a m-
file titled (ROCKET_MISSILE. m).

5. Test the program.
To test this program, the Matlab program is run and generates the desired output. Please,
refer to the program’s output file (Rocket_Trajectory1.svg, Rocket_Trajectory1.tif,
Numerical_Computation_Results.pdf). Figs. 3 and 4 illustrate the output generated by the
MATLAB program codes.

Fig. 3 MATLAB Plot of the Rocket Trajectories

8 |1 7

9 |1 7

Fig. 4 MATLAB Numerical Computation of the Rocket Range vs Angle Theta

10 |1 7

3.0 Real-life Application

Fig. 3 The Saturn V Rocket (Used in Apollo 11 spacecraft) [9]

The model presented in the previous section is based on physics principles [12], [13]. However,

the flight of a rocket launch can be presented in real world situations. Fig. 3 illustrates the Saturn
V rocket used in the Apollo 11 spacecraft [9]. This section, employ the use of the second order
differential equation to model the Saturn V rocket launch. The rocket can be modelled
mathematically, including its position, time derivatives, velocity and acceleration. The second
order differential equation can be broken into a number of first order differential equations using
the technique called approximating gradients [14]. Let’s consider a one-dimensional space, assume
that at any given time k the values of the instantaneous acceleration ak, velocity vk, and position xk
of the rocket. Applying the forward differencing method involving the velocity vk+1 of the rocket
at timestep k+1 and a small-time interval change of ∆𝒕, the acceleration of the rocket is given in
equation 6 as:

𝑎௞ =
ௗ௩ೖ

ௗ೟
 ≈

௩ೖశభି௩ೖ

∆௧
 (7)

11 |1 7

This implies that,

𝑣௞ାଵ = 𝑣௞ + ∆𝑡 𝑎௞ (8)

In the same way, using the position and acceleration parameters we obtain:

𝑥௞ାଵ = 𝑥௞ + ∆𝑡 𝑣௞ (9)

The above equations provided the means to compute the acceleration of the rocket at any given
time step k with its position and velocity parameters. In addition, these equations will further
provide a means to compute position and velocity at the next timestep k+1, k+2, k+3, … over all
time intervals. The numerical solution to the differential equation is a MATLAB vector of x values
corresponding to vector of time values. For instance, at time t = 0.1, x is initially -2 for the
SATURN V rocket. Table 1 gives the numerical values of k, t and x parameters [14], [15].

Table 1: A Numerical Solution of the Three Parameters k, t and x

Parameter Numerical Values
k 1 2 3 4 5 6 7 8 …
t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 …
x -2 1.8 2.3 2.1 4.7 6.0 6.1 7.4 …

4.0 Saturn V Rocket Launch Simulation with Matlab

Table 1 provides an information regarding the Saturn V rocket. Below are MATLAB codes that

used the for loop at each time step, calculates an acceleration follow by the velocity, then, follow
by a new position of the rocket [15], [16].

v = 0; % initial velocity
h = 0; % initial height
tstart = 0; % start time
dt = 0.1; % time step
tstop = 300; % how long to simulate for
for t = tstart :dt: tstop
a = GetAcceleration (); % get current acceleration
% find the new values
h = h + dt * v; % update height
v = v + dt * a; % update velocity
end ;

In order to plot these parameters, it is important to capture the parameter values into vectors.

Implying that the values of a, v, h, and t are stored in vectors. For instance, the first statement
becomes v (1) = 0; and the updates become v (k+1) = v (k) +… and so on. Nevertheless, in real
world rocket launching, the rocket flight telemetry parameters are not stored in the program. The
final sets of the updated velocity and height parameters are not stored. However, these parameters

12 |1 7

belong to the time (t = tstop + dt) and the height is first updated before the velocity. The updated
codes are illustrated below:

v = 0; % initial velocity
h = 0; % initial height
tstart = 0; % start time
dt = 0.1; % time step
tstop = 300; % how long to simulate
k = 0;
for t = tstart :dt: tstop % vector of times
a = GetAcceleration (); % get current acceleration
% capture telemetry for plotting
k=k+1; A(k)=a; V(k)=v; H(k)=h; T(k)=t;
% find the new values
h = h + dt * v; % update height
v = v + dt * a; % update velocity
end

The Newton’s laws of motion can be employed in order to determine the Trust and Mass of the

rocket. We can assume that the thrust and mass of the rocket are constants. Suppose the rocket
produces a trust F and mass M, then, we can have the following equations:

𝑀𝑎 = 𝐹 − 𝑀𝑔 (10)

Where the parameter g is the acceleration due to gravity at the earth's surface. Therefore, the
new acceleration will be as given in equation 10.

𝑎 = ቀ
ி

ெ
 − 𝑔ቁ (11)

In order to formulate the model of the Saturn V rocket, the following assumptions have to be made:

 A rocket's mass does not remain constant.
 After a time, it runs out of fuel.
 The faster a rocket move, the greater the air resistance.
 The density of the air changes with height.

Suppose the rocket is flying vertically, and ignoring the change in acceleration due to gravity,

we can write the force balance on the rocket as:

𝑀(𝑡) 𝑎(𝑡) = 𝐹(𝑡) − 𝐷(𝑡, 𝑣, ℎ) − 𝑀(𝑡)𝑔 (11)

The parameters F(t) is the thrust at time t, M(t) is the mass, and D(t, v, h) is the drag on the rocket
at time t when travelling at velocity v at height h. Therefore, the instantaneous acceleration is given
as:

13 |1 7

𝑎(𝑡) =
ி(௧)ି஽(௧,௩,௛)ିெ(௧)௚

ெ(௧)
 (12)

To compute the acceleration at time step k, we simply evaluate the numerical value of each of

the terms on the right-hand side of equation 12 at each step of the iteration of the loop. In the
previous code’s segments, we need a more precise GetAcceleration() function that will use three
parameters namely, time, height and velocity. The plotting of the trajectory will be made possible
using the plot function in Matlab. The modified code segment is illustrated below:

% Initial conditions
v = 0;
h = 0;
% Times and seasons
tstart = 0;
dt = 0.1;
tstop = 300;
k = 0; % Clock tick
% loop through all times
for t = tstart :dt: tstop
a = GetAcceleration (t, h, v); % get acceleration
% capture telemetry for plotting
k=k+1; A(k)=a; V(k)=v; H(k)=h; T(k)=t;
% update velocity and height
h = h + dt * v;
v = v + dt * a;
end

% graphics

 % height Graph
subplot(2,2,1) %Top Graph
plot(T,H,'b')
title ('Height')
xlabel('t')
ylabel('h')
grid

% Velocity Graph
subplot(2,2,2) % Bottom Graph
plot(T,V,'r')
title ('Velocity')
xlabel('t')
ylabel('v')
grid

 % Acceleration Graph
subplot(2,2,3) % Bottom Graph
plot(T,A,'r')

14 |1 7

title ('Acceleration')
xlabel('t')
ylabel('a')
grid

5.0 The acceleration function

The GetAcceleration function is a global function, it has the capability of calling other local
functions. The function can be used to compute the instantaneous Mass, Thrust and Drag. In
addition, the function returns the instantaneous acceleration [14], [15], [16]. The code segment
below shows the description of the GetAcceleration function.

function a = GetAcceleration (t, h, v);
g = GetGravity (h);
f = GetThrust (t);
m = GetMass (t);
d = GetDrag (t,h,v);
a = (f - m*g -d)/m; % Newton Second Law

function thrust = GetThrust (t)
burnTime = 150;
if(t >0 & t< burnTime)
thrust = 34e6;
else
thrust = 0;
end

function mass = GetMass (t)
initialMass = 2.9e6; % kg
initialFuelMass = 2.15e6; % kg
burnTime = 150; % seconds
burnRate = 0.02; % kg/s

if (t <=0)
mass = 2.9e6;
elseif (t >0 & t< burnTime)
mass = 2.9e6 - 2.15e6;
else
mass = 0;

function dragcoeff = GetDragCoeff (t,h)
% Assume a constant drag coefficient
% (but we could make it a function of height etc)
dragcoeff = 0.6;

15 |1 7

function drag = GetDrag (t, h, v)
% calculate a quadratic drag
% NB! When v is +ve (up) drag should be +ve (down)
k = GetDragCoeff (t, h);
drag = k * 0.6;

function g = GetGravity (height)
% ignore variation with height !
g = 9.81;

An important function in the above code segment is the GetDrag() function. This function
implements a very simple drag model. Herein, the resistance is proportional to the square of the
velocity. The constant of proportionality is called a drag coefficient and this is set to a value of
0.6. The constant of proportionality can be customized as a function of height, this means that as
the air thins the resistance drops.

6.0 Program Testing

This section presents the MATLAB program testing. The codes should be tested to ensure that
it performs as expected. The students can modify the codes to change the functionality of the
Matlab codes as you run on. When you have composed your own modify function in Matlab, check
that it executes as required. When all your code appears to run as expected, re-test it by changing
input parameters, finding out that the output changes as required. You can try out with the codes
by changing different parameters and getting different results. The files coming with the SATURN
V Rocket launch are listed beneath:
1. RocketLaunch.m, RocketLaunch.eps, RocketLaunch.asv
2. GetAcceleration.m
3. GetDram.m, GetDram.asv
4. GetDragCoeff.m
5. GetGravity.m
6. GetMass.m, GetMass.asv
7. GetThrust.m

6.1 Program Output

The outputs of the program are the rocket height, velocity and acceleration. This is provided in
the program’s output files, namely, Output_Program.tif, Output_Program.jpg. Fig. 5 shows the
generated MATLAB program’s output.

16 |1 7

7. Conclusion
This classroom activity demonstrates a computational problem solving. The approach presented

in the activity to guide the undergraduate engineering students to understand problem solving
techniques and computational problem-solving using MATLAB. This includes using a coherent
and structured approach to resolving problems. In computational problem solving, several
approaches are combined that will lead to the final solution. Nevertheless, problems must be
approached methodically, applying algorithms or step by step procedure by which one arrives at a
result. In this classroom activity, the procedure on how to develop a model to determine the time
of flight of rocket missile launch from the surface of the earth and distance travelled when the
rocket returns to the ground was demonstrated. To explain the problem in a well-defined and
precise way, the student should modify and write MATLAB codes to compute the range that a
rocket missile would travel when it is launched with an initial velocity of 20 m/s at an initial angle
of 𝜃. Compute this range for all angles between 0° and 90° in steps of 1° degree. Determine the
angle that will result in the maximum range of the rocket. Plot the trajectory of the rocket missile
for angles between 10° and 90° in 1° increments. Plot the maximum-range trajectory in a different
color and with a thicker line. Assume that the atmospheric air has no effect on the trajectory of
flight. Furthermore, the flight of a rocket launch can be confronted with real world situations. The
Saturn V rocket used in the Apollo 11 spacecraft was employed to provide better understanding of
a real-life scenario. The methodology makes use of the second order differential equation to model

17 |1 7

the Saturn V rocket launch. The rocket can be modelled using MATLAB codes including its
position, time derivatives, velocity and acceleration. The classroom activity will assist the
undergraduate engineering students to better understand the computational problem-solving using
MATLAB.

References:

[1] Luís M. B. C. Campos and Paulo J. S. Gil, On Four New Methods of Analytical Calculation of

Rocket Trajectories, Aerospace J. 2018, 5, 88, pp. 1-32.
[2] George Buchanan et al., The Development of Rocketry Capability in New Zealand—World Record

Rocket and First of Its Kind Rocketry Course, Aerospace J. 2015, 2, pp. 92-117.
[3] Hoani Bryson et al., Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics, Aerospace J.

2016, 3, 10, pp. 1-27.
[4] Stamminger, A. STERN—A rocket programme for German students. In Proceedings of the 21st

ESA Symposium on European Rocket and Balloon Programmes and Related Research, Thun,
Switzerland, 9–13 June 2013.

[5] Rojas, J.I.; Prats, X.; Montiaur, A.; Garcia-Berro, E. Model rocket workshop: A problem-based
learning experience for engineering students. Int. J. Emerg. Technol. Learn. 2008, 3, 70–77.

[6] Heath, M.T.; Dick, W.A. Virtual rocketry: Rocket science meets computer science. Computat. Sci.
Eng. IEEE 1998, 5, 16–26.

[7] Cannon, R.L. Model rocketry as a teaching aid in science. Sch. Sci. Math 2010, 74, 471–475.
[8] Jayaram, S.; Boyer, L.; George, J.; Ravindra, K.; Mitchell, K. Project-based introduction to

aerospace engineering course: A model rocket. Acta Astronaut. 2010, 66, 1525–1533.
[9] NASA. Rockets Educator Guide; EG-2011–11–223-KSC; NASA: Washington, DC, USA, 2011.

Available at:
https://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/Rockets.html.

[10] Box, S.; Bishop, C.M.; Hunt, H. Stochastic six-degree-of-freedom flight simulator for passively
controlled high-power rockets. J. Aerosp. Eng. 2011, 24, 31–45.

[11] Open source model rocket simulator. Available online: http://openrocket.sourceforge.net/
download.html (accessed on 21 February 2015).

[12] Stephen J. Chapman, MATLAB® Programming for Engineers, Fourth Edition, Thomson Learning,
Thomson Corporation, Canada, 2008, pp. 206-216.

[13] Stormy Attaway, MATLAB®: A practical Introduction to Programming and Problem Solving,
College of Engineering, Boston University, MA, Butterworth-Heinemann, Elsevier Inc., Third
Edition, 2013, pp. 14-70.

[14] Eric Peasley, 3 DBT Part A: Simulating a Rocket Launch, pp. 37-48, available:
https://www.robots.ox.ac.uk/~dwm/Courses/1P5_2011/1P5notes3.pdf.

[15] Eric Peasley, Introduction to the P5 Computing Laboratory, Department of Engineering Science,
Oxford University, Britain, pp. 1-67, available at:

 http://www2.eng.ox.ac.uk/~labejp/Courses/1P5/Lecture1Slides.pdf
[16] Eric Peasley et al. P5 Computing Laboratory and DBT 5 Sessions in Michaelmas, Hilary,

and Trinity, 2018-2019, pp. 107-127, available at:
www.eng.ox.ac.uk/~labejp/Courses/1P5.

