
Lab 4a: Preparing data for the hurricane tracking lab

Due at 7 pm on Monday 23 September:

1) A spreadsheet with summaries of the advisory information for your assigned hurricane

2) Three weeks of data sources in your portfolio spreadsheet

None of this needs to be handed in, but you need to be ready to work on the lab in class on Monday.

1. Setting up

a. Create a folder on your external drive called Lab4. Create a sub-folder called tracks.

2. Hurricane advisories

a. On the next page will be a set of directions for how Joe has made it much easier for you

to get the advisories for your hurricane using Python.

3. Data spreadsheet for your portfolio

a. Finally, you need to fill in your data spreadsheet (see the Course Overview section on

Blackboard) for the data you prepped today. While you’re at it, update last week’s data as

well if you haven’t done so yet. Save the file to your drive with a name and location that

you can remember. Don’t worry if you can’t fill in all the parts of the data for today. You

should know all the parts for the data from last week.

Loops

September 1, 2016

A note on future exercises

In the first exercise, I tried to speak intuitively rather than use specific Python
vocabulary words. However, some knowledge of the standard vocabulary can be
immensely helpful when looking for help online, so now I will begin to transition
from more intuitive definitions to more typical Python vocabulary. Specific
vocabulary words will be bolded, and might be good additions to the glossary
in your portfolio.

1 Patterns

In this lab you will be working with hurricane data from NOAA. NOAA archives
all the advisories they issue for hurricanes and tropical storms.

1. Go to http://www.nhc.noaa.gov/help/tcm.shtml?ALL and go over the
description of their advisories. You will use the information in the advi-
sories to track the position of the hurricane, its size, and the forecasts over
the course of the storms life.

2. See the annotated advisory provided to see what information you will be
using and where in the advisory it comes from (Fig. 1).

3. Now, go to http://www.nhc.noaa.gov/archive/2016/ and find the ad-
visory archive for the hurricane you will be working with.

4. Look at a few of the advisories and try to locate the information we’re
interested in.

Now you could go through every advisory, copying down the information
you need, but there’s a better way! Each advisory is structured the same
way and contains the same information. All the advisories together can
be thought of as forming a pattern, repeating again and again with slight
variations. You can teach Python this pattern by creating a template,
and like playing a game of Mad Libs in reverse (Fig. 2), use the template
to pick out the hurricane’s latitude like you could the first custom adjec-
tive used in a completed Mad Lib. Although the construction of these

1

http://www.nhc.noaa.gov/help/tcm.shtml?ALL
http://www.nhc.noaa.gov/archive/2016/

Figure 1: Example hurricane advisory

2

templates is slightly outside of the scope of this course1, start trying to
recognize times you work with any sort of text in a repetitive manner, like
finding all the phone numbers or emails in a document or changing the
way a date or title is formatted in a set of documents. These could be
situations where a little script could save a lot of time.

2 The script

1. Download and extract the zip file containing this weeks exercise from
blackboard.

2. Open up exercise_2.py with IDLE.

Hopefully this is starting to look a little familiar, we’ll go through the
scrip line by line and introduce three new topics: comments, file paths,
and loops.

3. # This script... The # symbol tells Python to ignore everything until
the next line. This allows you to write comments in your scripts for any
people who might be reading it.

4. import forecast_parser as fp Don’t worry about this line for now, it’s
just telling Python where to find some of the tools we’ll be using in this
script.

5. ADVISORY_ARCHIVE_URL = "" # The... See that = sign? If you’ll recall
from last week, this means we’re setting a label.

(a) In the context of Python, labels are referred to as variables since
what exactly they refer to can vary. Think back to algebra, the
concept of a variable in Python is essentially the same as the variables
you worked with in math, although in Python, variables can refer to
more than just numbers.

(b) The label name is ADVISORY_ARCHIVE_URL, but what exactly are we
labeling? Single quotes (’) and double quotes (") are used to de-
lineate strings, blocks of text. This distinguishes it from text that
Python should try to interpret, like labels and tools and instructions.

(c) There’s nothing in between the two quotes, so right now the variable
ADVISORY_ARCHIVE_URL is referring to an “empty” string, no text at
all. Having a variable refer to something is called assignment. In
this instruction, a variable is assigned the value of an empty string.

(d) The # designates a comment, so Python knows to ignore the rest of
the line.

1The way that the templates were defined for this script is called “regular expressions”, or
regex. They can be a bit obtuse but with a reference and some trail and error, you can get
a lot done. If you’re interested in learning how to write them, here are some fun ways to get
started: regex crosswords, interactive tutorial

3

https://regexcrossword.com/howtoplay
http://regexone.com/

Figure 2: NOAA Advisory Mad Libs

4

(e) In between the quotation marks you should put the web address for
the advisory archive of your hurricane.

6. OUTPUT_SPREADSHEET_FILE = "" #... This instruction is essentially the
same as above, only with a different variable. This string will tell the
script where to save the spreadsheet it makes, and what to call it. This is
the path of the file, like a URL for a file on your own computer. When
you’ve run tools in ArcGIS maybe you’ve noticed that after selecting a file
or output, you’re left with something like

“Output Feature Class: F:\GIS\lab_1\oberlin_dem.tif”.

This is a file path, directions to a specific file or folder. In this example,
the file “oberlin_dem.tif” is in the folder “lab_1” which is in the folder
“GIS”, etc.

7. advisory_informaton_list = list() This instruction both sets a vari-
able, and calls a tool, or function.

(a) It calls the “list” function, which returns an empty list. Saying a
function “returns” something is a fancy way of saying it evaluates
to something. You can think of

√
4 evaluating to the value 2, or as

the square-root function returning the value 2.

(b) Then it labels the empty list (the result of the list function) as
“advisory_information_list

8. advisory_url_list = fp.get_advisory_urls(ADVISORY_ARCHIVE_URL)

Another instruction that calls a function and then assigns the result to
a variable. Most instructions in your Python scripts will be like this.
fp.get_advisory_urls calls a function that returns a list of web ad-
dresses for each hurricane advisory. The input is the web address of the ad-
visory archive for your hurricane, which was labeled as “ADVISORY_ARCHIVE_URL”

9. for url in advisory_url_list: This instruction is a little different
from what we’ve seen so far. What it does is a create a loop, specifi-
cally a for loop, allowing for the same steps to be done multiple times.
The steps that will be “looped over” are indented below the for loop.

But how many times will this loop run? Notice a familiar label in the
instruction that creates the loop, advisory_url_list. It will run as many
times as there are items in the list that the variable advisory_url_list

references. But what does url mean? It is in fact a variable that will
be set each time the loop is run. It will, in turn, reference each entry in
the list. The instruction for url in advisory_url_list: can be read
as “for each item in the list labeled advisory_url_list, give the item
the label url and then execute the following instructions.

10. #... Next we have two comments, ignored by the computer.

5

11. advisory_function = fp.get_advisory_dictionary(url) Notice that
this line, as well as the line below it, is indented. This means that they
are instructions that will be looped over. This is another instruction that
calls a function and then sets a variable to reference the result of the
function. This function, fp.get_advisory_dictionary gets information
from a hurricane advisory. The function is given the URL of an advisory
as input. url references a web address in the list that advisory_url_list
refers to.

12. advisory_information_list.append(advisory_information) This in-
struction executes a function. This function adds the item referenced by
the label advisory_information (set in the instruction above) to the list
referenced by advisory_information_list. This is a special function
specific to the list advisory_information_list, which is why the only
input that the function takes is what is being appended to the list, not
which list the item should be added to. Python automatically creates this
function for every list.

13. fp.advisory_list_to_csv(...) This instruction also calls a function,
which creates a spreadsheet from information. The function is given two
things as input, a list to create the spreadsheet from, and a file path to
save it to.

Now you understand what the script does. Fill in your own values for
ADVISORY_ARCHIVE_URL and OUTPUT_SPREADSHEET. Then save the script and
run it by clicking on the “Run” menu and then selecting “Run Module”, or by
hitting the “F5” key.

6

	exercise_2.pdf
	Patterns
	The script

