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If f(z) is a single-valued, continuous function in some region R in the complex plane then we

define the integral of f(z) along a path C' in R as (see Figure 1) ”

Lf(z)dz:L(u+iv)(dm+idy).

Here we have written f(z) and dz in real and imaginary parts:

f(z)=u+iv and dz=dz+idy.

Then we can separate the integral into real and imaginary parts as

Lf(z)dz = L_(“ dz —vdy) +1L(“ dz +udy). We often interpret real integrals in terms of area; now we

define complex integrals in terms of
over paths in the complex plane.
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We first need to find the equation of the line Cs in the Argand plane. 1+1 ¢ 3+1
We note that both points lie on the line y = x so the complex equation of the straight line is

z=x+ir giving u=zandv=2z. Also dz=dr+idr=(1+1i)dx.

/ zdz = ] (xdxr —adx) + i/ (rdr + xdx).
Co Co Cy
:i/ (22 dx)
Ca

Next, we see that the limits on x are x = 1 to x = 3. We are now in a position to evaluate the
integral.

3 3
Therefore / zdz=1 / 2rdr = i[mg} =1(9—-1) =8i
Cs 1 1

Reference: Mathematical Methods for Physics and Engineering. K.F. Riley ,M.P. Hobson, S.J. Bence,
Cambridge University Press



Example As a more intricate example consider the integral / »*dz where C is that
v Cl
part of the unit circle going anticlockwise from the point z = 1 to the point
2 =1. See Figure 3.

v A
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An Important Result

/f(z)dz £/|f{z}||dz| ﬂM/d.*:ML.
C c C

M is an upper bound on the L is the length of the path C
value of |f(z)| on the path, i.e.
|f(z)| <MonC



What Is an Analytic Function

A function that is and

at all points of a
domain R

is said to be analytic (or regular) in R.

A function may be analyticin a
domain except at a finite
number of points (or an infinite
number if the domain is
infinite);

Such Finite points
are called

Singularities




Cauchy-Riemann Relations

(to check for analyficity)

If we have a ‘ f(Z — H(.)C y) + IU(JC y)

function that is
T

<+

to check for analyticity
(differentiability)

divided into its real
and imaginary parts

and
condition
is that the four

partial derivatives
, are

and
satisfy the Cauchy-—
Riemann relations




» In which domain(s) of the complex plane is f(z) = |x

— i|v| an analytic function?

Writing f = u + iv it 1s clear that both du/dy and ¢dv/dx are zero in all four quadrants

and hence that the second Cauchy-Riemann relation in (24.5) is satisfied everywhere.
Turning to the first Cauchy—Riemann relation, in the first quadrant (x > 0, y > 0) we

have f(z) = x — iy so that
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which clearly violates the first relation in (24.5
quadrant.

Following a similiar argument for the other quadrants, we find

). Thus f(z) 1s not analytic in the first

.
cu : :

— =—1 or +1 forx<0and x>0, respectively,
0x

v . :

— =—1 or +1 fory>0andy <0, respectively.
cy

Therefore du/dx and dv/cy are equal, and hence f(z) i1s analytic only in the second and
fourth quadrants. «
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Power Series and Convergence
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The sum of the

series either goes
to 0 or a finite
value as the
terms goes to o




Radius and Circle of Convergence

|z| <R... Convergent
|z| >R... Divergent
|z|=R... Inconclusive




Laurent Series

In mathematics, the Laurent series of a complex function f(z) is a
representation of that function as a power series which includes even
terms of . It may be used to express complex functions in

cases where a Taylor series expansion cannot be applied.

—_— + Ao + al(z — Zo) + al(z — Zo)z+....

Nth Coefficient :




Singularities, Zeros, and Poles

the point is called a

, Or

of the complex function f(z) if f is
not analytic at but every neighbourhood

of it

Isolated Singularity:

If a function f(z) is not analytic at
but analytic everywhere in the entire

plane the point is an Isolated
Singularity of the function f(z)

£f(z)=

l -2z

has an isolated singularity at z -1




Types of Singularities
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Let £ (z) have an i1solated singularity at ¢ with Laurent series expansion

= 4 sin (2) )
£(z) = Z':n (z-e)™  valid for zed (a, 0, R) . £ = z

Tis 2%

[ z2 z8 Z7 2 1 ]
—_— e —  — . —  —_————
z 31 51 7! gl 1!

i z! 3 § 10
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Then we distinguish the following types of singularities at «.

(1) If ¢,=0forn=-1,-2 -3, ..., then we say that £ (z) has a removable singularity at «.

(11)  If k is a positive integer such that ¢, ¢0 but ¢, =0 for n=-k-1, -k-2, -k-3, ..., then we say that £ (z) has a pole of order k at «

-7
( Pole of order 2
at z=1

(11)  If ¢, ¢ o for infinitely many negative integers n, then we say that £ (z) has an essential singularity at z = «.

\

f(Z)=el/x=1_|_1_|_ 1 + 1 B 1
x 2x*  6x3 f(z)_(z—l)z

\_ J




Leros of a Complex Function

if f(zo) = 0 then z = zy 1s called a zero of the function f(z)

Zeros are classified 1n a similar way to poles, 1n that if

fz) = (z = z0)"g(2),

where n 1s a positive integer and g(zo) #* 0, then z = z¢ 1s called a zero of order
nof f(z). If n =1 then z = z( 1s called a simple zero. It may further be shown

that if z = zo 1s a zero of order n of f(z) then it 1s also a pole of order n of the
function 1/1(z).
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) 1s continuous

[ ]

Cauchy’s theorem states that if f(z) is an analytic function, and f’(
at each point within and on a closed contour C, then

Cauchy’s
ff&nk=& (24.40)
C

Theorem

In this statement and from now on we denote an integral around a closed contour

by fc.

Note: For Proof Refer to Riley Hobson




Most Cauchy’s Residue Theorem

Important

If we have a closed contour 95C and there

z-ple are poles inside the contour then we can
close the contour around the poles
(only poles that are inside the contour)

Select the poles according to
the boundary conditions and
the specific problem

f(2) =

(z +21)(z — z,) Take the residue at the

selected poles




Calculating Residue’s

For a pole of Order 1

/
- .

f(2) = fo(2) @ +ag+a(z—2zy) +a,(z—zy)%+....

(z—2) (z=2)

- O

Residue|pote=z, = lim (z = 20)f (2).

f f(z) = 2mi Z Residues
@ [



f(z) =

Calculating Residue’s

For a pole of Order ‘n’

\ 4

fo(2) e R +Clo+a1(Z_ZO)+a1(Z_ZO)2+""

(z—z0)" (z—zo)"

1 dn—l

f f(z) = 2mi Z Residues
€ P |-
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Taking contour only in the
upper half plane C
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Proof of Cauchy’s Residue theorem by

Laurent Series

T ——

WEEE
interested in
this

Thus we are so / -1 =55 jgf(z) dz -
' So we take n=-1,

interested in the

Residue: Thus (z —zp)Y = 1
coefficient of the ‘

power

Nth Coefficient :

(z —2zp)7"

ff(z) dz = (2mi)a_,
C




* https://youtu.be/T647CGsuOVU

* (You think you know about Complex Numbers: Decide after watching
the above video: max 2 per day)

Other Videos (For Contour Integration)
https://youtu.be/b5VUnapu-gs
https://youtu.be/ 3p E9jZOUS8



https://youtu.be/T647CGsuOVU
https://youtu.be/b5VUnapu-qs
https://youtu.be/_3p_E9jZOU8
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