Phase diagram introduction back

Much of the simple systematics of phase diagrams is covered in some unpublished course
notes that RP built up over the years, reaching the form that they take below in 1991.
They are reproduced in their entirety, starting

Some introductory material (based on Powell et al., 1998) can be used to set the scene
here: calculating phase diagrams involves a number of steps:

1. Choose a model system in which to do the calculations. A model system is just the
chemical system, usually specified in terms of oxides, in which the equilibria to be
calculated can be represented. This specifies which phases, and the substitutions
within them, that will be able to be considered. Obviously these phases can only
involve those end-members that occur in the thermodynamic dataset used (or linear
combinations of them). For example, the model system normally used to consider
metapelites is KoO-FeO-MgO-Al,03-Si0o—H,0 (or KFMASH) (Thompson, 1957),
allowing most of the critical minerals, and the FeMg ; and (Fe,Mg)SiAl ;Al
(Tschermak’s) substitutions in them, to be considered. This model system is the
one used for some examples below.

2. Formulate the thermodynamics of the phases in the system. Given that a central
part of calculations on assemblages involving solid solutions is the calculation of the
equilibrium compositions of the phases, the activity-composition (a—x) relationships
of the phases are needed in algebraic form, in terms of the compositional variables
to be calculated.

3. Decide on which phase diagrams are to be constructed. This decision will depend
mainly on what geological problems are being addressed. Important types of dia-
grams are:

e A P-T projection, usually a key phase diagram, shows the stable invariant
points and univariant (or reaction) lines for all of the bulk compositions in
the system. A P-T projection for KFMASH, constrained by stipulating the
presence of muscovite, quartz and HoO (i.e. with mu + q + HyO “in excess”),
is shown in Fig. 1. Such diagrams are the familar petrogenetic grids of the
literature.

o Compatibility diagrams show the mineral assemblages, and ranges of mineral
solid solutions, at specified P-T, for all of the bulk compositions in the model
system. A compatibility diagram for AFM, with mu 4+ q + HyO in excess, is
shown in Fig. 2.

e P-T pseudosections show just those phase relationships for a particular bulk
composition. A P-T pseudosection for a model pelite composition in AFM,
with mu + q + HyO in excess, is shown in Fig. 3.

e T—x or P—x pseudosections show the phase relationships for a particular bulk
composition line, at specified P or T respectively. A T—x pseudosection for
AFM, with mu + q + H,O in excess, is shown in Fig. 4.
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Fig 1: P-T projection for KFMASH (4+mu + q + H,0O); the in-excess
phases are not included in the reactions labelling the univariant lines,

as is usual for such diagrams.
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Fig 2: AFM compatibility diagram for KFMASH (4+mu+ q + H20) at P =

6 kbar and T' = 560°C
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Fig 3: P-T pseudosection in KFMASH (+mu+q+H,0) for a “common”
pelite composition: Al,O3 = 41.89, MgO = 18.19, FeO = 27.29, and K5O

= 12.63 (in mol%)
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Fig 4: A T—x pseudosection in KFMASH (+mu+q+H30), for a composition
line along which FeO:MgO varies, with x = FeO/(FeO+MgO), and Al,O3 =
41.89, Fe0 + MgO = 45.48, and K20 = 12.63 (in mol%). This composition

line goes through the composition used in Fig. 3.



Pseudosections are important because in systems with solid solutions, it is not usu-
ally obvious which parts of the equilibria in a P-T projection will be seen by a
particular bulk composition, given that the compositions of the phases vary along
the univariant lines (compare Figs 3-4 and Fig. 1).

The diagrams in Figs 1-4 were of course calculated with the program THERMOCALC.
Although there are other types of phase diagrams that can be drawn, for example
with activities or chemical potentials on the axes, the calculation of the types of
diagram in Figs 1-4 will be the focus of the workshop.

. Build up the phase diagram via calculations on the equilibria involved. Each mineral
equilibrium calculation involves setting up and solving a mathematical problem,
that, in THERMOCALC, involves solving a set of non-linear equations. Generating
a phase diagram usually involves many such calculations. Phase diagrams can be
drawn from THERMOCALC output using the new software, DRAWPD.

rp 28-4-01



Metamorphic phase diagrams: Course Notes 2000

These notes do not correspond directly—in content or in order—with what will be covered
in the course. They provide, in different parts: something of a glossary, a summary of some
ideas, technical background material, practical methods. I do not pretend that the notes are
‘complete’! Think of them as necessary but not sufficient for your phase diagramming. .. (If
you would like to quote these notes, refer to “Powell, R., 1991. Metamorphic Mineral Equilibria
Short Course: Course Notes. University of Melbourne”). This is a minor revision (and TEX-ing)
of those hand-written 1991 notes.

System is used in two ways (the meaning is usually obvious by context):

1. for a range of chemical compositions eg all possible compositions in KAlO,-FeO-
MgO-Al;03-Si05-H,O (KFMASH), or at least all possible compositions attainable
with the phases chosen to be considered. This example system is a model for many
pelites but also includes many compositions unlike any rocks. The term sub-system
is used for a part of a system, so KMASH is a sub-system of KFMASH.

2. for an example composition in a range of chemical compositions. So, system, used in
this way, may correspond to a rock, including any fluid on grain boundaries during
metamorphism. The composition of such a system can be referred to as the system
composition or, more commonly, the bulk composition of the system. If the context
is an equilibrium one, the system is that part of the rock which is in equilibrium.
This may well exclude the cores of porphyroblasts for example. This sort of system
corresponds to the idea of an equilibration volume .

A system, as an example composition, can be described in terms of:

e the proportions of phases (proportions of minerals, fluids, silicate liquids)—as in the
mode of a rock.

e the proportions of components. Components come in independent sets, a set of
independent components involving the minimum number of chemical compounds
of fixed composition which can be used to describe all the chemical variations in a
system. In many systems a set of oxides makes an independent set. There are always
many possible independent sets. The choice of the set is usually made on the basis
of diagrammatical convenience. Of course, for a particular system, any independent
set can be expressed in terms of any other independent set. For example, the pelite
system, K5O-FeO-MgO-Al;03-Si09-HO is often considered in terms of KAIO,-FeO-
MgO-Al,03-Si05-H5 0, with KAIO, instead of K;O. But, to look at andalusite-
sillimanite-kyanite stabilty, this is a one component system involving Al;SiOj in
Al-Si-O. There is no problem in having negative proportions of components.

Equilibrium in a system is defined thermodynamically by the equality of the chemical po-
tentials of every component in every phase. Practically there is therefore a problem with
using this definition because minerals have a stoichiometry—a fixed relationship between
sites—making it difficult to arbitrarily add components, say SiO, to pyroxene, keeping
FeO, MgO etc fixed. Such additions are possible, albeit in infinitesmal amounts, via de-
fects, so there is no problem with the definition. Operationally, however we proceed using
end-members of phases.



End-members of a phase are chemical compounds of fixed composition which have the stoi-
chiometry of the phase into which they substitute, for example CaMgSi;Og in clinopyrox-
ene. In general, each phase has different end-members. There is no operational difficulty
with respect to defining the chemical potential of an end-member of a phase because
any end-member can be added to or subtracted from a phase holding the amount of
the other end-members constant. It is straightforward to show that, for example, in a
clinopyroxene:

[CaMgSisOg = HCa0O T g0 + 21si0,

This amounts to a statement of internal equilibrium in the phase. We can now restate
the equilibrium definition—the chemical potentials of each component are equal in every
phase—in terms of end-members of phases by saying that for each reaction between
end-members of phases, that that reaction written in terms of chemical potentials is an
equilibrium relationship; or:

Ap=0

where A is an operator, with Aa meaning ) r;a;, with r; a reaction coefficient. For
example, for a reaction between the end-members of the phases for equilibrium between
garnet, chlorite, chloritoid, quartz and H5O:

Fe5A12813010(OH)8 + FeAIQSIO7(OH)2 + QSIOQ = 2F63A128i3012 + 5HQO
gives an equilibrium relationship for this assemblage:

HFesAl,Sis010(0H)s T HFeAl,SiOT(OH), T 2/8i0, = 2[4Fe3Al,Si5012 + OHUH,0
In this, for example g0, = —2 and 7,0 = 5.

Model system , by which is meant a well-defined system, for example KAlO,-FeO-MgO-
Al,O3-Si05-H50 for pelites, rather than a real system, corresponding to real rocks. The
problem with real systems is that they include a spectrum of elements, from major,
through minor, to trace, and it is difficult to say at which level an element no longer
contributes to the phase equilibria. The approach is to study in detail a model system
which ‘models’ real rocks, but to have a good idea how excluded elements might perturb
the results.

Phase diagrams summarise phase equilibria for model systems. How phase diagrams may
be applied to a rock depends on how well the model system approaches the real system,
and how well the mineral textures and mineral compositional relationships in the rock
may be interpreted, particularly whether what is observed can be understood in terms of
equilibrium having been achieved during the evolution of the rock. Moreover, just reading
complex phase diagrams is non-trivial.

Total phase diagram is the phase diagram which has all the phase equilibria information for
a system, ie all the phase assemblage and phase composition dependence on conditions
of formation. The number of axes it has, depends on the number of components in the
system. For an n-component system, with a particular choice of components, the common
choice of the axes is pressure (P), temperature (1) and n—1 (independent) compositional
() ones. There are n — 1 x terms, because the n’th can always be found by difference;
equivalently there are n amounts but only n — 1 proportions. So there are n + 1 azxes to
the total phase diagram for a system.



The PT'z total phase diagram, is only one of the possible ones, depending on the nature of
the system being considered. Variables come in conjugate pairs of intensive and extensive
variables:

Intensive variables : i-variables have the same values in all phases which are in equi-
librium.with each other, and not on the amount of the components in the system.
The main examples are P, T and the p;. (The processes for equalisation of these
are deformation, conduction and diffusion respectively).

Extensive variables : e-variables, in contrast to intensive variables, depend on the
number of moles of the components in the system; they have different values in
phases which are in equilibrium.with each other. Examples are entropy (.5), volume
(V), and the number of moles.(n;). Defining the mole fraction of ¢ by z; = n; /(> n;),
x; can be seen to be a simple function (normalisation) of extensive variables, as is
molar volume, V/(3_n;), etc.

The conjugate pairs of i- and e-variables are P and V', T" and S, and z; and pi. The
intensive variable of the pair is the appropriate axis of the total phase diagram if the
value of that variable can be considered to be constant and superimposed on the system
being considered. The P and T variables are the usual choice of axes from these two pairs
because deformation and conduction are usually considered to be fast enough geologically
for P and T to be considered to be constant and superimposed on the system. If this is
not appropriate then the extensive variables need to be used. However V' rather than P
would be appropriate in order to consider equilibrium for example in fluid inclusions, in
which pressure is a passive consequence of the volume of the system (the fluid inclusion),
and is not externally superimposed on the contents of the fluid inclusion. Whereas phase
diagrams in metamorphic petrology involving V' or S are not common, we routinely switch
between the extensive and intensive variables of a pair when, for example, we switch from
explicitly considered SiO; as a composition variable (e-variable) to considering quartz as
being in “in excess”, with pgio, fixed by the presence of quartz (i-variable).

Given that drawing or looking at even three-dimensional diagrams is difficult, much of the
art of phase diagrams has to do with producing lower dimension representations of total
phase diagrams. This involves, in particular, various sections and projections of the total
phase diagram. What is possible turns out to depend on the sort of variable involved in
a particular axis of the total phase diagram:

Intensive variables as axes : Because all the phases have equal values of the intensive
variables at equilibrium, it is possible to section the total phase diagram with rep-
sect to intensive variables. Sectioning the total phase diagram is a valuable way of
producing a lower dimension representation of the total phase diagram.

Extensive variables as axes : Because all the phases do not have equal values of the
extensive variables, it is not possible to section with respect to e-variables. However
it is possible to make pseudosections with respect to e-variables or functions of e-
variables (see below).

Lower dimension representations of the total phase diagrams of which the main types,
often used in combination, are projections, sections and pseudosections. Usually the aim
is to produce a two-axis representation. A key idea here is the loss of information in



going from the total phase diagram to some lower dimension representation. In a sense,
the process is one of damage limitation: what information is least needed in the phase
diagram? what information is critical? Sometimes several different phase diagrams in
combination can provide the necessary detail. Part of the art of phase diagramming is
choosing the appropriate phase diagram to draw.

sections of the total phase diagram with respect to i-variables are possible because all
the phases have equal i-values at equilibrium. Sectioning can be done at a constant
i-value, say constant P or T, or indeed constant PT', or at a function of i-value(s), for
example along a PT line, say corresponding to an orogenic PT path. An even more
valuable form of sectioning, involving a function of i-values, is when a particular
phase is said to be ‘in excess’, meaning the phase is always present, because this
amounts to stipulating a particular value or function of chemical potentials. Clearly
the loss of information in going from a total phase diagram to a section involves the
dimensions of the total phase diagram used in the sectioning.

Compatibility diagrams are an important sort of section of the total phase diagram,
involving sectioning with respect to all i-variables involved as axes of the total phase
diagram. The remaining axes of the total phase diagram are all e-variables, and are
usually compositional variables. Compatibility diagrams are used quantitatively to
represent the phase relationships for the section conditions, and may be calculated
or drawn up from the compositions of coexisting minerals in rocks of a range of com-
position from a small area in the field. Compatibility diagrams are used qualitatively
to label fields on, for example, PT projections, representing the topology of the tie
lines etc in that field, but not the actual mineral compositions.

projections take the information from a volume of the total phase diagram and project
them onto an appropriate plane. The best example is a conventional PT diagram,
which should always be called a PT projection; the projection being undertaken with
respect to all the compositional variables (e-variables). In other words, the diagram
shows the phase equilibria for all compositions in the system. Such diagrams must
be read with care because not all of the equilibria represented will be ‘seen’ by
each rock. The loss of information in projections has to do with this.disentangling,
and with the absence of information on the dimensions of the total phase diagram
projected, for example, the phase compositions in the case of PT projections.

It is unfortunate that the term ‘projection’ is also used for the geometric process of
making a phase be in excess in a compatibility diagram context, as in ‘projecting’
from muscovite in going from KAlOy-FeO-MgO-Al,O3 into AFM. Having phases “in
excess” amounts to making a section of the total phase diagram, and has nothing to
do with projections. It is best to avoid using projection in the sense of saying that
PT diagram is projected from phase A; much better is to say A is in excess, or just
+A.

pseudosection are ‘sections’ of the total phase diagram with respect to e-variables or
functions of e-variables. The most common form is a ‘section’ for a particular bulk
composition or range of bulk compositions. Because the compositions of the phases
in the system generally lie off the ‘section’ plane, the diagrams give mineral assem-
blage information not mineral composition information (ie pseudosection). More-
over any open system process that changes the composition of the system generally



invalidates the use of that pseudosection. Regardless of this, pseudosections are in-
valuable for looking at mineral equilibria, particularly as a way of presenting easily
understandable information from PT projections.

In terms of producing lower dimension representations of the total phase diagrams, the
choice of axes is critical. Say, a PT projection is to be drawn for the 6-component sys-
tem, KAlOy-FeO-MgO-Al;03-SiO2-HO; clearly drawing compatibility diagrams for the
fields is impossible (4-component compatibility tetrahedra are the largest compatibility
diagrams that can be drawn). However, with muscovite, quartz, and H,O in excess, three
components can be treated as pu; rather than x; variables, and this 6-component system
becomes effectively ternary, with (AFM) compatibility triangles now being all that is re-
quired. The corresponding PT projection, with muscovite, quartz, and HyO in excess,
will then be a section with respect to the three components treated in terms of ;.

Types of phase diagrams : given the difference in properties of intensive and extensive
variables it is not surprising that the geometrical relationships on diagrams depend on
whether intensive or extensive variables are involved on the axes. On the other hand, if we
are looking, for example, at i-i projections—projections with intensive variables on both
axes—it will not matter geometrically what combination of P, T" and u; are involved.
Common types of phase diagrams are now outlined, with i used for intensive, and e used
for extensive :

e-e sections : mainly compatibility diagrams, as discussed above.

i-e sections : sections with respect to all other intensive variables; can only be drawn
for systems which are effectively binary, which have one compositional variable.
Examples are T-X and p;-X sections. Although a considerable effort is required
to make many model systems effectively binary, the rewards are great because the
diagrams are generally very illuminating, being able to show the way in which the
compositions of the projected minerals change with conditions of formation. Even
AFM can be made effectively binary, by having an additional in excess phase, for
example biotite.

i-e projections : projections of intensive variable information for effectively binary sys-
tems. For example, a P-X projection can show compositional information for equi-
libria for all temperatures, and, in combination with a standard PT projection, is
a valuable summary diagram. Similar diagrams can be drawn for systems larger
than effectively binary if there is an identical dominant substitution in all the min-
erals which are solid solutions. In many systems of interest, MgFe_; is just such a
substitution, so that P-X ‘projections’ can be drawn for AFM for example.

i-e pseudosections : sections with respective to the other intensive variables, but pre-
senting the mineral assemblage information for a line of bulk compositions through
the compatibility diagram for the system.

i-i projection : sections with respect to the remaining intensive variables, projections
of information involving all the compositional variables. The best example is a
conventional PT diagram, but u-p diagrams are also in this category. Compatibility
diagrams are used to label the fields on i-i projections.



Constructional elements : The different types of phase diagrams have different construc-
tional elements controlled by the different properties of intensive and extensive variables.
These elements and the rules which control how they can be put together are now sum-
marised:

i-i projections : the major feature on these diagrams are reaction lines across which
compatibility relationships change, by crossing tie lines or disappearance of phase
in effectively ternary systems for example. Reactions occur as lines because all the
phases have equal values of intensive variables at equilibrium. Reactions generally
change stability across intersections; Schreinemakers rules govern the stability rela-
tions around intersections in many cases However, where solid solutions are involved,
and transitions between systems of different sizes are involved, alternative rules are
required. Similarly reactions which reflect singularities, for example when coexisting
solid solutions become colinear or coplanar, have to be treated differently.

e-e sections : Compatibility diagrams for an effectively n-component system involve 1-,
2-, and n-phase fields, except at conditions corresponding to reactions or intersec-
tions. Fields of coexistence of minerals are involved because extensive variables have
different values in coexisting phases at equilibrium. 1-phase fields are always convex
in the vicinity of the apices of n-phase fields; they are always of finite size except at
a disappearance of phase reaction in which that phase is about to be consumed. Tie
lines connect coexisting phases; tie lines can only cross at the conditions of reactions
or intersections. Tie line bundles are always of finite width, except at a reaction
across which that tie line is broken.

i-e sections : They involve alternating 1-phase and 2-phase fields; in the 2-phase fields,
tie lines are at right angles to the intensive variable axis (because intensive variables
have equal values in all phases at equilibrium). For the same reason, reactions occur
as lines; at each one, three 2-phase fields and one 1-phase field terminates. The
metastable extensions of 2-phase field boundaries always lie in 2-phase fields across
such reaction lines.

i-e projections : They consist of bundles of lines tracing the compositions of the coex-
isting minerals along reaction lines

Schreinemakers analysis : i-i projections

This is the approach to follow in sorting out the stability of reactions on i-i projections, for
example PT projections. It is not a universal panacea for such diagrams; it does not ‘work’
for systems involving solid solutions, where there is a reaction connecting a smaller to a larger
system, eg reactions connecting KFASH to KFMASH, and where singularities are involved,
for example where phases pass through coplanarity with each other with changing conditions.
However the method is appropriate for systems with phases of a fixed composition, and for
systems with solid solutions which do not involve the above features.

The conventional use of Schreinemakers analysis is to determine which of the reactions are
stable and which are metastable where the positions of all the reactions for a system have been
calculated. In general, reactions change stability across intersections, Fig. 1,2. In terms of the
final i-1 projection, only the stable reactions are normally drawn, because these are the only



changing T

) =0r=
a b
—a
G T o T \
/ 1,
—1a
X X X X
changing T =or=
>
a b
G T2 T-b
] b 1
X X X X
changing T =or=
> or
a b
—+a
G T /_\ T
| —b
b .
azeatrgpic
point
\/ v 7ia_./
X X X X
increasing T
> solvus
a b 1p consolute
( point
G T
Ta
X X X



Fig. 1: Schreinemakers analysis applied to the aluminosilicate polymorph unary system
P P

Schreinemakers Rule : the metastable extension of [i] lies between i-producing reactions

Fig 2: Schreinemakers anaysisin AFM : KFMASH + g+ mu + H,O
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Note that Schreinemakers Rule is obeyed, and that all two phase assemblages
are stable through less than 180; through the intersection



ones which can be seen by mineral assemblages which maintain equilibrium, say, with changing

PT.

The analysis is done sub-system at a time, starting with the smallest, and intersection at
a time. Schreinemakers Rule is usually stated in terms of the ‘out’ phase for each reaction
around an intersection. This works because, for the phases involved in the reactions at an
intersection, one phase, in general, is not involved, or ‘out’, in each reaction. Noting that, for
an n-component system, n 4+ 1 phases are generally involved in writing a reaction, and n + 2
phases are involved in an intersection, there are n 4 2 reactions around the intersection, each
having one phase ‘out’. Some reactions involve less than n + 1 phases and such reactions are
called degenerate. When there are degenerate reactions involved in an intersection, less than
n + 2 reactions are involved around the intersection. For degenerate reactions, more than one
‘out’ phase is involved.

Schreinemakers Rule gives the relative stability of the reactions around an intersection;
it says which end of each reaction is more stable than the other end. It is possible for an
intersection and all its reactions to be metastable, and, in this case, Schreinemakers Rule
gives the different levels of metastability of the ends of the reaction. Having determined the
relative stabilities of the reactions around each intersection, putting together the whole diagram
involves making consistent the levels of stability of reactions which run between intersections.
The stability level of intersections and all their reactions may need to be changed to achieve
this. If a reaction running towards another intersection is designated to be metastable, but
that intersection designates it to be stable, then that intersection must be metastable, and the
reactions around it metastable and very metastable (instead of stable and metastable). The
exception to this changing of the stability level of reactions involved in an intersection whose
stability level must be changed, is when that reaction is a degenerate reaction from a smaller
system (see below). The idea of Schreinemakers Rule providing relative stability is important;
it is only when the intersections and their component reactions are fitted together that the
actual stability of intersections can be determined.

Schreinemakers Rule states that the metastable extension of i-‘out’, denoted [i, always lies
between i-producing reactions . Looking at Fig. 1-2, observe that this true. When degenerate
reactions are involved, say [i,j], then the reaction terminates at the intersection if [i] and [j] are
stable on the same side, but the reaction is stable across the intersection if [i] and [j] are stable
on opposite sides of the intersection; the former will happen if i and j appear on the same sides
of reactions, the latter if i and j appear on opposite sides.

A subsidiary rule is that assemblages involved in sides of reactions can only be stable over
180° or less, and 180° is only possible for degenerate reactions which are stable across an
intersection. Look at the stability of ky+g, st+bi, st+chl, etc in Fig. 2 to show that thsi
applies. This amounts to a ’consistency’ check once the analysis is completed. An even more
important check involves going round the final diagram, now involving only the stable reaction
lines, and labelling each field with a compatibility diagram, noting that tie lines can only change
across a reaction line, and can only change by the specified reaction.

A systematic method should be adopted for performing Schreinemakers analysis. Any system
is likely to have reactions occurring wholely in sub-systems, at corners, on edges, on faces of the
compatibility diagram for the system. Such reactions must be considered before the full system
reactions because their stability is unaffected by the full-system reactions; they will run across
full system intersections, and, in fact, a stable sub-system reaction can run across a metastable



full system intersection! The approach to follow is :

e stage 1 : start by looking at all the constituent 1-component sub-systems, at apices of
the compatibility diagram. If there are two or more phases plotting at any apex, then do
the Schreinemakers for those reaction(s). Remember that in a n-component system, n+1
phases are needed to write a reaction. Note that reactions from different sub-systems will
cross indifferently; intersections are not involved.

e stage 2 : now look at all the 2-component systems forming edges of the compatibility
diagram. If there are any reactions in these sub-systems, do the Schreinemakers on
them. Reactions already considered at an earlier stage are unaffected by this stage of the
analysis, although those reactions may lie across new intersections; the new intersections
may have the same or a lower level of stability than such a reaction. Note that reactions
from different sub-systems will cross indifferently; intersections are not involved.

e stage k: repeat for progressively larger systems, until the full system (stage n) is consid-
ered.

This scheme may seem laborious but it is the only way to cover all contigencies.

An example : some equilibria in KASH

Looking at Fig.3, appreciate that the compatibility diagram has an inaccessible area, bulk
compositions there cannot be considered given that we are not considering any phases in that
part of the compatibility triangle. So, in terms of the above systematic approach, the corners
of the effective compatibility triangle are cor, or and q.

e stage 1 : only one phase at each apex, so no 1-component system reactions. We do know
that q, or, and cor must be stable individually over the whole PT diagram because there
are no possible reactions which can react them out.

e stage 2 : for two edges of the compatibility diagram there are enough phases to write
reactions :

or-cor : one reaction, cor+or=mu, can be written, and, because there are no reactions
in smaller sub-systems, it must be stable along its whole length in the PT diagram,

cor-q : five reactions : the aluminosilicate polymorph reactions plus reactions of the form
cor+q=aluminosilicate. Schreinemakers analysis establishes the stability relations;
the aluminosilicate polymorph reactions, although degenerate in this system, do
change stability across the triple point, A. The intersection, B, is clearly metastable.
Note that these reactions are crossed indifferently at C by cor4+or=mu because the
reactions are in different systems at the same stage.

e stage 3 : In the full system there are no ternary phases but there are full-system reac-
tions and intersections. The intersections D, E and F involve the ternary reactions, and,
in these cases, also reactions considered at an earlier stage. Note that the stability of
reactions considered at an earlier stage are unaffected by considerations at this stage.



Fig. 3: PT projection for KASH (result of Schreinemakers analysis)
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Flg 4 : compatibility diagramsin thefields of Fig. 3
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C is interesting because, at stage 2 it was an indifferent crossing between two stage 2
reactions, the metastable cor=and-+q, and the stable mu=cor+or; now it becomes also a
metastable stage 3 intersection involving mu+q=and+or.

e The final stage involves labelling the fields between the stable reactions with compatibility
diagrams. Note that the accessible part of this triangular compatibility diagram must be
covered by triangles. The stable tie lines in a compatibility diagram in a particular field
are found by looking at the reactions which bound that field. Remember that tie lines
are only changed by crossing reactions. Also, reactions beyond the field of interest may
have to be examined, as long as the information they contain is not altered by reactions
nearer the field. Look around the compatibility diagrams to do a consistency check.

Additional features

Whereas Schreinemakers ‘control’” many phase diagram features, in addition there are some
other features referred to in the opening paragraph concerning systems with solid solutions.
This section serves as an introduction to these; it does not pretend to be complete in covering
singularities.

As already explicitly acknowledged above, the heirachy of sub-systems that constitute any
system have to be handled in a systematic way in Schreinemakers analysis. This is even
more true in handling systems involving solid solutions, for example KFMASH. In such a
system, it is appropriate to look first at the constituent sub-systems, and build up to the
full system. The new feature is that, when solid solutions are involved, a reaction from the
next larger system emanates from each intersection. The intersection, excluding this reaction,
follows Schreinemakers exactly as before. The additional reaction involves all the phases of the
intersection. At the intersection, the phases do not involve any of the additional component,
but the proportion of the component increases in the phases in the reaction away from the
intersection. The way round of the reaction emanating from the intersection is controlled by the
position of the reaction with respect to the reactions making up the intersection; alternatively,
if the reaction is known, say from knowledge of the distribution of the additional component
between the phases, its position is fixed with respect to the reactions emanating from the
intersection.

These ideas can be examined with the help of Fig. 3 which shows the consequence of
adding Fe;O3 to KFMASH in Fig. 2. The full system reaction emanates from the KFMASH
intersection, and the amount of ferric iron in the phases increases away from the intersection
along the line. The reaction was located in this position because it is known that ferric iron
prefers biotite and staurolite, and thus assemblages involving these phases are stabilised by the
addition of ferric iron. The way round of the reaction can be determined by examining AFM
+ FeyOg, or by observing which phases are ‘out’ either side of the ferric iron-bearing reaction.
This latter method is a powerful control on the geometry of such diagrams.

A serious form of complication in phase diagrams involves singularities of various types. Here
we will consider just one sort, involving colinearity (coplanarity) of phases in a compatibility
diagram, in which at least one of the phases involves a solid solution. The situation is illustrated
in Fig.4, showing what would happen if garnet, staurolite and kyanite become colinear in
composition within AFM. It is supposed that this colinear equilibrium, represented by the
colinearity reaction, g+ky=st, intersects the st-g-ky-bi equilibrium in such a way that the



Fig 3 : Relationship between equilibria, subsystem to system -
adding ferric iron to AFM
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Fig 4 : Singularities - colinearity of garnet, staurolite and kyanite in AFM
(assuming that g, st and ky become colinear along the reaction involving
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reaction is st+bi=g+ky at higher pressure, and st=g+bi+ky at lower pressure. The form of
such singularities is always like this, with the colinearity reaction terminating at an invariant
point (with no metastable extension), with the other reaction changing at the intersection. The
details can be understood by examination of the compatibility diagrams; note that the usually
the complexities occur over a narrow temperature range. In our calculations singularities of
this sort are surprisingly common; it seems to relate to the ability of changing Tschermak’s
substitutions with pressure and temperature to reverse the Fe-Mg partitioning of elements.

Plotting, balancing reactions, projecting

Plotting phases on compatibility diagrams

Compatibility diagrams are normally plotted in terms of mole proportions (and not volume or
weight proportions). Effectively binary systems require a bar diagram to portray compatibility
relationships—see Fig. 1. As MgO:SiOy in chrysotile (chr) is 3:2, this controls the relative
position of chr between MgO and SiO2. Thus MgO/(MgO+SiOy) = 2 so that chr plots 2 of
the way between MgO and SiO,. Obviously chr has more MgO than SiO,, so that chr plots

closer to MgO.

Plotting on ternary compatibility diagrams is essentially the same—see Fig. 2. There are
6 pieces of information with which to fix the composition of a phase, only two of which are
independent (ie only two are needed).

Balancing reactions

Reaction coefficients are the numbers before each end-member or phase in a reaction which make
the reaction balanced for each component; reaction coefficients are, by convention, negative for
end-members/phases on the left of the reaction, positive on the right. So, for :

4CaMg81206 + CaMg(COg)2 = 3C&COg + CaQMg5Si8OQQ(OH)2

(with HoO and COg in excess and ignored in the rest of this section), the reaction coefficients
are rq; = —4, rq00 = —1, 1. = 3 and 1, = 1. Note that this reaction s balanced for CaO, MgO
and SiOs.

Many simple reactions can be balanced by inspection, but for more complex ones, solution of
a set of simultaneous equations is involved, each equation ensuring that the reaction is balanced
for a particular component. (In excess phases, H,O and COg here, can be balanced after the
other reaction coefficients have been determined, ‘in excess’ meaning that any quantity of H,O
and COy can be included in the reaction). Using the name of the end-member to represent its
reaction coefficient, we will now (re)determine the reaction coefficients for the above equation
using the simultaneous equation approach. To balance the reaction for CaO, dol + 2tr + di +
cc = 0 must be true, the coefficients in this being the number of CaO in each of the end-member
formulae. In this way :

dol + 2tr + di + cc = 0 for CaO
dol + 5tr + di = 0 for MgO
&tr + 2di = 0 for SiO9

10
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This is three equations in four unknowns, but, in any reaction, all the reactions coefficients
can be multiplied by the same arbitrary number, and the reaction is still balanced. So any one
reaction coefficient can be set in the above : take tr = 1. Then

dol + di +cc=-2dol + di =-52di = -8

This is trivial to solve, giving : di = -4, dol = -1 and cc =3. In more complex cases a more
systematic method, for example Gaussian elimination, is required.

Projections—no solid solutions

We are interested in the graphical construction involved in converting a higher dimension com-
patibility diagram into a lower dimension one by ’projecting’ from a phase or phases, as in
converting the 6-component system, KAIOs-FeO-MgO-Al;03-SiO2-H5O, into the 3-component
AFM by ’projecting’ from muscovite, quartz and H,O. A simple example is illustrated in Fig.
3, involving projection of phases onto calcite + talc from dolomite. Geometrically, it is easy
to see what is involved. Algebraically, the method is the same as writing reactions: it involves
writing a reaction between the phase to be projected, the phase(s) to be projected from, and
coordinates on the line (or plane) onto which the phase is to be projected. In the example in
Fig. 3, the coordinates on the line are the phases, calcite and talc.

Considering the projection of quartz in Fig. 3, by inspection, the reaction is
3CaMg(CO3)s + 4Si05 = 3CaCO3; + Mg3Si4O10(OH),

Ignoring the projecting phase, dol, this is 4q = 3cc + ta; where does projected g plot between
ta and cc? Care is required - the compatibility triangle involves CaO, MgO and SiO,, so the
points defining the projection line should be expressed in terms of these. CaCOj3 involves one
molecule (of CaO), but Mg3Si4O10(OH), involves 7 molecules (of MgO and SiOy)—mnote that
H>0 and COs, being considered to be in excess here, are not included in this calculation. Thus,
in terms of this compatibility triangle, the reaction is 4q = 3cc + 7ta*, where ta* is talc/7, and
projected q lies 0.3 of the distance between cc and ta.

Projecting chrysotile, the reaction is ta + 3dol = 2chr 4 3cc, which becomes, ignoring dol :
2chr = Tta* - 3cc

The negative coefficient for cc means that chr does not plot on the line between cc and ta, but
on the line extended, beyond ta. To see where, consider coordinates along the cc - ta line in
terms of ta/(cc+ta) : ccis at 0, ta is at 1 and chr plots at .

Projecting periclase, the reaction is dol = per + cc, or per = -cc. Because ta is not involved,
per projected plots at infinity, as is clear geometrically.

Projections—with solid solutions

When solid solutions are involved, compatibility diagrams, as labels for fields on PT projections
for example, may only be drawn qualitatively, showing the basic topology, as the compositions
of the coexisting phases vary across the fields. In addition, it is possible to draw quantitative
compatibility diagrams from rock data or calculated equilibria for a particular PT for example.
Either way, 'projections’ are needed to reduce the dimensions of the full compatibility diagram,
and inevitably one or more of these phases involve solid solutions.
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This involves no particular difficulty although more care and understanding are involved,
particularly in choosing a projection line (plane) and in reading the resulting compatibility dia-
grams. The first, obvious, point is that there is loss of all information concerning compositional
variations of the projecting phase; over the resulting compatibility diagram the composition of
the projecting phase varies, at least across fields involving less than n phases where n is the
number of components involved in the compatibility diagram. In Fig. 4, on projecting from
biotite in AFM, the way in which the composition of biotite varies with position across the bar
diagram can be seen with reference to the AFM diagram. Clearly it is only across the 3-phase
fields in the AFM diagram, and thus the 2-phase fields in the bar diagram, that the biotite
composition does not vary. In drawing a quantitative bar diagram at a particular PT from
AFM, the projections must be done with respect to the appropriate biotite composition.

A more subtle point about projecting from variable composition phases is that the projection
line (plane) should be closer to the projecting phase than the closest variable composition phase.
In the AFM case, therefore, the line was chosen to be on the low Al,Oz side of garnet. The
reason for this is to ensure that, on projection, the compositions of the projected phases vary
monotonically across the resulting compatibility diagram. To see that this might not otherwise
happen, envisage that for more Fe-rich compositions biotite is more Fe-rich than coexisting
garnet, and that for Mg-rich compositions it is the other way round. Then, if the projection
line is chosen to be on the high Al,O3 side of garnet, then the projected compositions of more
Mg-rich garnets will be on the Fe side of Fe-rich garnets

Given this caveat there are often many possible orientations for the projection plane (line);
care must be taken in choosing one which illuminates rather than obscures the phase relation-
ships. For example, if Fe-Mg solid solutions are involved then it is wise to have this substitution
explicitly in the resulting compatibility diagram. Experiment!

RP 28-5-00
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Fig. 4: projections involving solid solutionsCIprojection from biotite in AFM
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