Calculating phase diagrams with THERMOCALC back

The “background>introduction” and “background>calculating mineral equilibria” sections pro-
vide a necessary introduction to this section. We shall assume that an appropriate THERMO-
CALC datafile has already been made for the model system of interest.

PT projections show the stable univariant and invariant equilibria for all of the composition
space of the model system. Depending on whether univariants affect parts of the composition
space that are petrologically interesting, PT projections may not be very interesting in them-
selves. Given that the compositions of the phases vary along univariants in P71 projections,
sometimes quickly, the parts of composition space that are affected by univariants may be diffi-
cult to gauge. With the exception of simple systems, PT projections can be almost impossible
to use directly.

Pseudosections show the dependence of phase relationships of particular model system com-
positions on PT', so can be used to relate how particular rocks respond to changing metamorphic
conditions. As a consequence they are often the most important phase diagrams to draw. Our
interest in drawing PT projections is often only as an essential precursor to drawing pseudo-
sections.

Compatibility diagrams show all the phase relationships for all compositions in the model
system at the specified PT. As choosing phases to be “in excess” to reduce the model system
to being effectively ternary—so that a triangular compatibility diagram can be drawn—may
be difficult or impossible for the larger systems now being considered, compatibility diagrams
are becoming less important.

Calculating PT projections

The constructional features of P-T projections, involving invariant! points and univariant lines,
are generally familiar.

Getting THERMOCALC to calculate the lines and points for a P-T projection is simple a
matter of specifying the phases involved, and the variance of the equilibria required. Generally
it is best to do this with the phases for each invariant point in turn, calculating the position of
the invariant point, and all the univariants around the point. Schreinemakers analysis at each
point is then done, followed by the putting together of the invariant points to determine which
are stable.

Depending on the model system, there be many or a very few stable invariant points. In
NCFMASH for blueschists and eclogites there are over a hundred (ask Gisella Rebay who has
calculated them!), whereas in NCKFMASH at upper amphibolite and granulite facies conditions
there are only a few univariants and one invariant (see White et al. 2001). Nevertheless knowing
the PT projection is a necessary step because it provides the overall stability framework of the
phase equilibria, and, if any univariants are stable in the pseudosection, this gives an invaluable
start to the construction of the pseudosection.

for an n component system, involving p phases, the variance v is equal to n — p + 2, otherwise known as the
phase rule. Invariant: v = 0; univariant: v = 1; divariant: v = 2; and so on



The annotated log files in the old web site (circa Powell et al., 1998) are a good place to
look at this point (although things have changed a little bit since then). The simplicity of
calculating an invariant (with TH KA1, a datafile with coding of the minerals in KFMASH?)
can be seen from the following log file—user input is highlighted. An ellipsis at the end of a
line signals that some output has been cut out. Where it says “(from script)”, it means that
the action was controlled by a datafile script; where it says “(nothing input)”, it means that on
the prompt for information return was hit, resulting in a default being used (in the case here,
the PT'window comes from the “setdefTwindow” and “setdefPwindow” scripts in the datafile).

reading phase info from this file ...

chl bi cd st ctd g mu ksp ky sill and q H20
which phases : bi st g chl ky

fluid in excess (from script)

phases in excess: mu q (from script)

variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant

n = n-variant
variance : O

specification of PT window:
PT window within which invariant points expected to lie
T low,high, P low,high : (nothing input)

< >
phases : chl, bi, st, g, ky, (mu, q, fluid)
reactions : |XXXX|XX|XXX|XX|--X
P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st)
11.20 639.6 0.3067 0.5534 0.4465 0.3495 0.2008 0.4348 0.7462

x(g) ...
0.7244 ...

Note that output gives the composition of all the phases at the invariant as well as its PT.
(It also gives the state of order of the chlorite and muscovite—the Q values). Compared to
the figures in Powell et al. (1998), this is a somewhat different result, being at about a kbar
higher P, for several reasons: one is the more recent dataset used, the other is that chlorite and
biotite are modelled using order-disorder. (Adding the script “calcsdnle yes” to the datafile
and rerunning shows that this P has a 20 uncertainty of about 1.5 kbar, so the difference is

not considered to be a problem).

Running a univariant is almost as easy:

chl bi cd st ctd g mu ksp ky sill and q H20
which phases : bi chl st g

fluid in excess (from script)

phases in excess: mu q (from script)

2the datafile name organisation is given in a separate documentation file


rp
bi st g chl ky

rp
0

rp
nothing input)

rp
bi chl st g


variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant
n = n-variant
variance : 1

specification of PT window:

P range over which T of reactions to be calculated
P window: P low,high : 4 12
T window within which reactions expected to lie
T window: T low,high : (nothing input)
P window :4 <-> 16 kbar :P interval : 2
< >
phases : chl, bi, st, g, (mu, q, fluid)
reactions : |XXX|X|X|XXX|XX|-X
P(kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st) x(g) ...
4.00 536.2 0.8803 0.6724 0.3276 0.9293 0.6216 0.02812 0.9822 .9816 ...
22chl + 42g + 86mu = 86bi + 10st + 178q + 69H20
6.00 579.4 0.6017 0.5981 0.4018 0.6663 0.4169 0.2107 0.9155 L9111 ...
31chl + 23g + 74mu = 74bi + 10st + 1259 + 103H20
8.00 606.5 0.4608 0.5742 0.4258 0.5022 0.2861 0.3649 0.8552 .8458 ...
33chl + 17g + 68mu = 68bi + 10st + 1029 + 112H20
10.00 628.0 0.3586 0.5598 0.4401 0.3990 0.2237 0.4283 0.7900 L7736 ...
33chl + 16g + 66mu = 66bi + 10st + 969 + 111H20
12.00 646.9 0.2750 0.5498 0.4502 0.3191 0.1888 0.4289 0.7148 0.6887 ...

32chl + 17g + 65mu = 65bi + 10st + 96q + 108H20

The output gives the composition of the phases along the univariant as well as the T" at each
specified P. Note how the minerals change composition along the univariant, with x for the
ferromagnesians becoming larger as P increases. The output also gives the balanced reaction
(each mineral on on a one oxide basis) at each P.

Calculating along a stable univariant, 3 things can happen:

1.

the univariant is cut off by a invariant, as happens in the above case with the invariant
involving, additionally, kyanite (also calculated above). The relative stabilities have to
be established with Schreinemakers analysis.

. the univariant dies at an end-member system invariant, as would happen along the above

calculated reaction at about 3.5 kbar, in the KFASH system. It then remains to be
established whether the univariant survives to that point, or is cut off by an invarian. In

this case, the latter is true, with a full-system invariant involving, additionally, chloritoid
(at 4.2 kbar).

THERMOCALC fails to calculate the univariant beyond a certain point, but no end-member
system invariant is being approached. This signals a failure of the non-linear equation
solver in THERMOCALC. The usual resolution is to vary the starting guesses in the datafile,
using ones that correspond to the values along the univariant that THERMOCALC could
calculate.

Later in this file, some special cases and special tricks are outlined.


rp
1

rp
4 12

rp
2

rp
(nothing input)


Calculating PT and Tz/Px pseudosections

Pseudosections involve the invariant and univariant equilibria they inherit from PT projections,
as well as additional boundary lines and points. In a PT pseudosection these inherited equilibria
are just those parts of the PT projection “seen” by the bulk composition being considered. In
a T'x pseudosection these inherited equilibria occur as horizontal lines, spanning the range of
bulk compositions that “sees” an equilibrium. The boundary lines and points separate fields
of different variance; across lines the variance changes by one, and through points by two. The
boundary points and lines can be most easily discussed with a new notation. Labelling is done
in terms of the lower variance assemblage involved, with the names of phases with zero modes
given in brackets. So for example in Fig. 1(iii), going from the g—chl-bi divariant field, through
the point at 8 kbar and 580°C, into the chl quadrivariant field, the modes of bi and g both go
to zero at the point. The point is therefore labelled “chl (bi g)”. Similarly, in going down T at
10 kbar from the g—chl-bi divariant field into the g—chl trivariant field into the chl quadrivariant
field, the two lines crossed are labelled “chl g (bi)” and “chl (g)”.

The labelling of boundaries (and points) in terms of the phases whose mode(s) go to zero is
shown in Figs 1 and 2. In THERMOCALC terminology such a boundary line is called “effectively”
univariant (regardless of the variance of the fields) because, in terms of variables, the boundary
is a line. The effective univariance® comes from the the combining of the bulk composition with
the equlibrium relationships.

In terms of a coherent view of pseudosection construction features, different rules appear to
apply across univariants, with this being the one situation in which variance does not change
by one (or, alternatively, the number of phase in the assemblage changing by one) across
a “boundary”. In the (proper) univariant case, divariant fields occur across the univariant,
with the swapping of (just) one phase in the assemblage. However, the univariant case can
be made to comply with all others by representing the univariant as an (infinitely) thin field
involving the full univariant assemblage. Then the standard way of thinking about boundaries
in pseudosections applies to univariants as well.

Points in pseudosections are where two modes are zero with respect to the lowest variance
assemblage at the point. At a point there is one n + 1, two n, and one n — 1 variance fields.
The two n — 1 to n variance field boundaries involve one each of the phases whose modes are
zero at the point. In terms of calculation, these two boundaries terminate at the point, whereas
the other two boundaries (n to n + 1 variance field boundaries) continue through the point.
Considering a compatibility diagram, like the portion of AFM in (a) in Fig 3, and considering
that the phase relations move with respect to the bulk composition (star) with changing PT,
the variance relationships around points in PT pseudosections should be clear(er), as well as
accounting for which lines will have metastable extensions.

Getting started in drawing a pseudosection is particularly straightforward if a univariant
that is known to be stable (from the PT projection) is “seen” by the bulk composition (see
below). Otherwise it is a matter of inspired guesswork, or Gibbs energy minimisation (via
dogmin) can be used as a last resort.

Calculating along a line, 3 things can happen:

3it is possible that there will be an argument over whether this is a traducing of the variance idea, but I
think not, in terms of number of equations and number of variables, once a bulk composition is specified. . .
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Fig. 1. The constructional features of part of thePT pseudosection in the top figure, indicating
the necessary calculations to define the lines and points. The numbers give the variance of
the corresponding field. In parts (i-iii), points and lines are labelled in terms of the lower
variance adjacent assemblage, with the phase(s) whose modes are zero there being given in
brackets. Part (i) focusses on the g + chl = st + bi univariant line, showing its relationship to
adjoining trivariant fields that terminate on it; (ii) focusses on the g--chl--bi divariant filed, its
boundary lines at higher P being with trivariant fields, whereas the lower P boundary is the
univariant; and (iii) focusses on the chl quadrivariant field.
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Fig. 2. The constructional features of part of the T-x pseudosection in top figure. The
numbers give the variance of the corresponding field. In parts (ii-iv), points and lines are
labelled as in Fig. 1. Part (i) shows the AFM diagram at the temperature of the

g + chl = st + bi univariant equilibrium, showing where the composition line of the T-x
diagram plots at this temperature, in projection from the calculated compositions of
muscovite; (ii) focusses on the g + chl = st + bi univariant line; (iii) focusses on the g--chl--bi
divariant field; (iv) focusses on the chl quadrivariant field.
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1. the line is cut off by a lower variance field, with a new phase joining the equilibrium. If
this line is a boundary between an n and an n + 1 variant fields, then at the point where
the line is cut off, an n — 1, two n and an n + 1 variant fields meet. Case (b) in Fig 3.

2. the line dies, with a mode going to zero. If this line is a boundary between an n and an
n + 1 variant fields, then at the point where the line is cut off, an n, two n + 1 and an
n + 2 variant fields meet. Case (c) in the Fig 3.

3. THERMOCALC fails to calculate the line beyond a certain point, but no mode is going to
zero. This signals a failure of the non-linear equation solver in THERMOCALC. The usual
resolution is to vary the starting guesses in the datafile, using ones that correspond to
the values along the univariant that THERMOCALC could calculate.

Calculating a point, 2 things can happen:

1. the point is calculated successfully.

2. THERMOCALC fails to calculate the point. This can arise for two reasons: 1. The quali-
tative assessment of the pseudosection geometry is flawed, and the point is not there to
be found. This can easily happen locating where trivariants touch univariants, when a
narrow field has been missed, for example. 2. A failure of the non-linear equation solver in
THERMOCALC is signalled. As before, the usual resolution is to vary the starting guesses.

Calculating the part of a univariant that is “seen” is illustrated for our KFMASH example
(using datafile TH DKA2):

chl bi cd st ctd g mu ksp ky sill and q H20
which phases : bi st g chl

fluid in excess (from script)

phases in excess: mu q (from script)

variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant

n = n-variant
variance : 1
you may set zero modal proportions, from:chl bi st g mu q H20
which to set : (nothing input)
equilibia now effectively univariant (eg a line in PT)

specification of PT window:

range over which T of reactions to be calculated
window: P low,high : 6 8.5

window within which reactions expected to lie
window: T low,high : (nothing input)

window :6 <-> 9 kbar :P interval : 0.5

‘o343 "

composition (from script)
A1203  MgD FeO K20
41.89 18.19 27.29 12.63


rp
bi st g chl

rp
1

rp
(nothing input)

rp
6 8.5

rp
nothing input)

rp
0.5


< >
phases : chl, bi, st, g, (mu, q, fluid)
reactions : |XXX|X|X|XXX|XX|-X

P(kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(pi) x(st) x(g) ...

6.00 579.4 0.6017 0.5981 0.4018 0.6663 0.4169 0.2107 0.9155 0.9111...
31chl + 23g + 74mu = 74bi + 10st + 1259 + 103H20

6.50 587.0 0.5602 0.5905 0.4095 0.6163 0.3747 0.2582 0.9005 0.8949..

32chl + 20g + 72mu = 72bi + 10st + 1169 + 108H20

mode chl bi st g mu

0.8709 0.1043 0.0248 0.4751

0.7708 0.1916 0.0376 0.4477
P(kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st) x(g)...
7.00 594.0 0.5238 0.5842 0.4158 0.5730 0.3392 0.3002 0.8855 0.8788...

33chl + 19g + 70mu = 70bi + 10st + 110q + 110H20

mode chl bi st g mu
0.7660 0.1138 0.1202 0.4730
0.3187 0.5079 0.1734 0.3333
P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st) x(g) ...
7.50 600.4 0.4909 0.5788 0.4211 0.5353 0.3101 0.3357 0.8705 0.8625. ..

33chl + 17g + 69mu = 69bi + 10st + 1059 + 112H20

mode chl bi st g mu
0.6780 0.1212 0.2008 0.4715
0.7258 0.2707 0.0035 0.2362
P(kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st) x(g)...
8.00 606.5 0.4608 0.5742 0.4258 0.5022 0.2861 0.3649 0.8552 0.8458...
33chl + 17g + 68mu = 68bi + 10st + 1029 + 112H20

mode chl bi st g mu
0.6010 0.1274 0.2716 0.4703
0.6711 0.2468 0.0821 0.2683
P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st) x(g)...
8.50 612.2 0.4329 0.5700 0.4299 0.4728 0.2663 0.3881 0.8396 0.8287...
33chl + 16g + 67mu = 67bi + 10st + 100q + 112H20

mode chl bi st g mu
0.5310 0.1329 0.3361 0.4693
0.6216 0.2242 0.1542 0.2950

Looking at this output, no mode output is given for 6 kbar, but is for 6.5 kbar, signalling that the
“seen” part of the univariant starts between these pressures. The two lines of mode information
relate to the two sides of the reaction: across univariants is the one place in pseudosections
that modes change discontinuously. Looking down pressure through the mode information, the
modes of garnet and staurolite are both going to zero towards the end point of the univariant
(so the point is bi chl (g st)). Looking at the high T side of the reaction, there is a change
in the assemblage, signalling that the st + bi trivariant touches the univariant here (the point
being st bi (g chl)). These points are easy to calculate, for example:



chl bi cd st ctd g mu ksp ky sill and q H20
which phases : bi st g chl

fluid in excess (from script)

phases in excess: mu q (from script)

variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant

n = n-variant
variance : 1
you may set zero modal proportions, from:chl bi st g mu q H20
which to set : g st
equilibia now effectively invariant (eg a point in PT)

specification of PT window:
PT window within which invariant points expected to lie
T low,high, P low,high : (nothing input)

composition (from script)
A1203 Mg0 FeO K20
41.89 18.19 27.29 12.63
< >
phases : chl, bi, st, g, (mu, q, fluid)
reactions : |XXX|X|X|XXX|XX|-X

P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st)

6.39 585.3 0.5692 0.5921 0.4078 0.6271 0.3838 0.2477 0.9039
mode chl bi st g mu
0.3858 0.04366 0 0 0.5705

x(g)...
0.8986. ..

Now, the g + chl + bi divariant on the low temperature side of the univariant goes into the
chl + bi trivariant at the low pressure end of the “seen” part of the univariant, so there is the

bi chl (g) line to calculate. So

chl bi cd st ctd g mu ksp ky sill and q H20
which phases : bi chl g

fluid in excess (from script)

phases in excess: mu q (from script)

variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant

n = n-variant
variance : 2


rp
bi st g chl

rp
1

rp
g st

rp
nothing input)

rp
bi chl g

rp
2


you may set zero modal proportions, from:chl bi g mu q H20

which to set : g

equilibia now effectively univariant (eg a line in PT)

specification of PT window:

P range over which T of reactions to be calculated

window: P low,high : 6 9

window: T low,high :

window :6 <-> 9 kbar :P interval :

composition (from script)
A1203 MgD FeD K20
41.89 18.19 27.29 12.63

P

T window within which reactions expected to lie
T (nothing input)
P

0.5

y (bi)
0.4219

y(bi)
0.3727

Q(bi)
0.2257

< >
phases : chl, bi, g, (mu, q, fluid)
reactions : |XX|X|XXX|XX|-X
P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi)
6.00 584.9 0.5687 0.6054 0.3945 0.6335
mode chl bi g mu
0.3769 0.06536 0 0.5577
P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi)
6.50 585.4 0.5692 0.5887 0.4113 0.6251
mode chl bi g mu
0.3882 0.03771 0 0.5741
P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi)
7.00 586.0 0.5686 0.5758 0.4241 0.6160
mode chl bi g mu
0.3977 0.01402 0 0.5882
77T

x(g) ...
0.8981...

x(g)...
0.8987. ..

x(g)...
0.8986. ..

Along this line to higher pressure, the mode of biotite is going to zero, signalling case (¢) in
Fig. 3. And so on. In this way a pseudosection is built up line-by-line and point-by-point.

Calculating compatibility diagrams

The constructional features of compatibility diagrams are illustrated in Fig. 4. The tie triangles
(divariant equilibria) in the full system (within the triangle) as well as the divariant equilibria
in the subsytems (edges of the triangle) specify much of the geometry, including the apices
of the one-phase fields (quadrivariant equilibria). The edges of the one phase fields can be
determined via the adjacent trivariant equilibria. In cases such as this, in which Fe-Mg is the
dominant substitution, the edges are close to being straight; in other systems, such edges can

be strongly curved. For example, running a divariant:


rp
g

rp
6 9

rp
0.5
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Fig. 3. The constructional features of the AFM compatibility diagram in the top figure. The numbers
give the variance of the corresponding field. Part (i) focusses on a full-system divariant field; (ii)
focusses on the chlorite one-phase field; its apices are defined by the corresponding apices of the
full and subsystem divariant fields; (iii) focusses on the KFASH divariant fields that define the left
hand edge of the diagram, (iv), focusses on the KMASH divariant fields on the right edge



chl bi cd st ctd g mu ksp ky sill and q H20
which phases : bi g chl

fluid in excess (from script)

phases in excess: mu q (from script)

variance of required equilibria :

0 = invariant
1 = univariant
2 = divariant
3 = trivariant

n = n-variant
variance : 2

specification of PT window:

P range over which equilibria to be calculated
P window: P low,high : 8

T range over which equilibria to be calculated
T window: T low,high : 600

projection plane has 3 apices, leaving A1203 MgO FeO K20
to be represented by mu and the projection plane
projection plane (from script)

A1203 Mg0 FeO K20
A 1.000 0 0 0
F 0 0 1.000 0
M 0 1.000 0 0
< >
phases : chl, bi, g, (mu, g, fluid)
reactions : |XX|X|XXX|XX|-X
P(kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi)
8.00 600.0 0.4929 0.5682 0.4317 0.5313 0.2726 0.3606
proj A F M mu phase
chl 0.189 0.400 0.411 -0.167
bi -0.261 0.643 0.618 0.500 -0.500
g 0.250 0.648 0.102 -0.250

x(g)...
0.8639. ..

The output gives the coordinates in the AFM triangle, the projection being from the calculated

composition of muscovite, as well as quartz and HyO.

Special cases and tricks-of-the-trade

1. In calculating univariants in PT projections, strongly curved ones and ones along which
the phase change composition quickly can be awkward to calculate. One way to do this
is to use isopleths (via the script “setiso”). If a phases composition, eg x(chl), changes
progressively along the univariant, the univariant can be calculated as a series of effectively

invariant points, each with a fixed value of x(chl). Running with TH DKA1A:


rp
bi g chl

rp
2

rp
8

rp
600


chl bi cd st ctd g mu ksp ky sill and q H20
which phases : <chl st g bi

fluid in excess (from script)

phases in excess: mu q (from script)

variance of required equilibria :
0 = invariant
1 = univariant
2 = divariant

n = n-variant
variance : 1

you may set compositional variables, from:

x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st) x(g) x(mu) y(mu)
(maximum number to set = 1)
which variables to set : x(chl)

how to specify isopleth for x(chl):
0: list of values
1: start, finish, interval
code : 1
isopleth: low,high,interval : 0.3 0.9 0.1
equilibia now effectively invariant (eg a point in PT)

specification of PT window:
PT window within which invariant points expected to lie
T low,high, P low,high : (nothing input)

< >
phases : chl, bi, st, g, (mu, g, fluid)
reactions : |XXX|X|X|XXX|XX|-X

P (kbar) T(C) x(chl) y(chl) Q(chl) x(bi) y(bi) Q(bi) x(st)...
11.37 641.1 0.3 0.5526 0.4473 0.3431 0.1981 0.4342 0.7399...
32chl + 17g + 65mu = 65bi + 10st + 96q + 109H20
9.13 619.1 0.4 0.5654 0.4346 0.4394 0.2457 0.4100 0.8193...
33chl + 16g + 66mu = 66bi + 10st + 98q + 112H20
7.36 598.6 0.5 0.5803 0.4197 0.5456 0.3178 0.3262 0.8748. ..
33chl + 18g + 69mu = 69bi + 10st + 106q + 111H20
6.02 579.7 0.6 0.5978 0.4021 0.6642 0.4152 0.2126 0.9149...
31chl + 23g + 74mu = 74bi + 10st + 124q + 104H20
5.07 562.5 0.7 0.6189 0.3810 0.7776 0.5100 0.1176 0.9447.
28chl + 31g + 79mu = 79bi + 10st + 1479 + 90H20
4.40 547.2 0.8 0.6455 0.3544 0.8700 0.5806 0.05805 0.9675. ..
24chl + 38g + 83mu = 83bi + 10st + 166q + 77H20
3.91 533.7 0.9 0.6797 0.3202 0.9422 0.6300 0.02240 0.9854...
22chl + 43g + 86mu = 86bi + 10st + 180q + 67H20

2. Watch out for singularities, where phases change sides on reactions, along a reaction’s
length. Unless these are recognised, and they can be arbitrarily close to invariants, they
can make a mess of the Schreinemakers analysis.
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3. THERMOCALCdoes not tell which way around univariant reactions are. It makes a guess,
but does not always get it right. (This is high up on my list of things to code. It is
actually a non-trivial problem.)

4. Degenerate univariant equilibria, like law = ¢z + ky + q + H2O in NCFMASH, will be
‘seen’ by all lawsonite-bearing fields, regardless of their variance. Nevertheless, a divarant
field that runs into this reaction will terminate in a full system univariant that can be
calculated as such by THERMOCALC.

top back
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