Geology 633

Thermodynamic calculation of mineral reactions II :

Reactions involving impure (‘real’) phases

The formulation for the free energy change of any reaction involving impure phases at elevated P and T is calculated as follows:

(rGP, T  = (rG°P, T + RT ln K

in which (rG°P, T refers to the free energy change of the pure phases in their standard state at elevated P and T, R is the universal gas constant, T is temperature and K is the equilibrium constant. The equilibrium constant takes account of the compositional departure of the phases from their pure, or ‘end member’, compositions. 
At equilibrium:  

(rGP, T  = 0 = (rG°P, T + RT ln K

Let’s break this into it’s two parts, (rG°P, T and RT ln K.  

1. (rG°P, T 

Recall from the previous lab that 

(rG°P, T  
= (rH°P, T  - T (rS°P, T 

= [ (rH°1, 298  + 298(T (((rH°/(T)P dT + 1(P (((rH°/(P)T dP] 




– T [(rS°1,298 + 298(T (((rS°/(T)P dT  + 1(P (((rS°/(P)T dP ]

Assuming that the variation of S with pressure is negligible (ie, 1(P (((rS°/(P)T dP = 0), the molar volume of crystalline solids (minerals) does not change significantly with P and T (ie, ( ( ( ( 0, so that 1(P (rV dP = (rV°s (P – 1) ), the above expression boils down to: 

(rG°P, T  
= [ (rH°1, 298  + 298(T (rCp dT + (rV°s 1, 298 (P – 1)  +or-  RT ln f °P,T]




– T [(rS°1,298 + 298(T (rCp/T dT ] 

in which the RT ln f °P,T term is for the volatile phases (eg, H2O or CO2; + if a product, - if a reactant. A further simplifying assumption is that the change in the heat capacities between reactants and products going from 1, 298 to P,T is usually small, such that (rCp = 0, the above expression is further simplified to:

(rG°P, T  
= (rH°1, 298  + (rV°s 1, 298  (P – 1)  – T (rS°1,298 +or-  RT ln f °P,T 

Note that this simplified formula is used for first-order calculations only. With the widespread use of computers, it is not that complicated to code in the full expressions and these will provide more accurate results. 

2. RT ln K 

The easiest way to understand the equilibrium constant, K, is to use an example.

Consider the reaction:

Grossular  garnet + 2 Sillimanite + Quartz = 3 Anorthitic plagioclase 


  Ca3Al2Si3O12          Al2SiO5

SiO2

CaAl2Si2O8
The reaction is written using end members of the minerals. Real garnet, such as measured on the electron microprobe, has Fe, Mg and Mn in it, and plagioclase has Na. Thus the thermodynamic concentration, or ‘activity’, of the grossular garnet end member in the real garnet is less than 1.0 (if the natural garnet were 100% pure Ca3Al2Si3O12, the activity would be 1.0). This affects the stability (free energy) of the phases, and therefore the position of the reaction. 

Activities are expressed in terms of the activity of a pure end member, or ‘phase component’ (eg, the grossular end member of garnet, Ca3Al2Si3O12) in a phase (meaning, the real mineral, such as a natural garnet: (Ca,Fe,Mg,Mn)3(Al,Fe3+)2Si3O12  ). The pure end member (phase component) is written as a subscript, the phase as a superscript, such as: 

aCa3Al2Si3O12Garnet
Leaving aside the issue of how to calculate activities for now, the equilibrium constant for the above reaction is:




(aCa2Al2Si2O8Plagioclase )3  
K =
_______________________________________

(aCa3Al2Si3O12Garnet ) ( aAl2SiO5Sillimanite)2 ( aSiO2Quartz)
The activity for each end member or phase is raised to the power of it’s coefficient in the balanced chemical reaction.

3. Activities

This is a big topic, covered nicely in Chapter 7 (and to some degree 4) of Spear (1993) and in Chapters 3 and 4 of Powell (1978) . 

Activity is thermodynamic concentration. The general formula for activity is:

a = γ X

or, using the example of garnet in the above reaction:

aCa3Al2Si3O12Garnet  = γCa3Al2Si3O12Garnet  *  XCa3Al2Si3O12Garnet
where a is the activity, X is the ‘ideal mixing’ activity, and γ is the activity coefficient. The activity coefficient takes account of the ‘excess free energy’ of an end member (eg, grossular end member of garnet) contained in an impure phase (eg, natural garnet) that is not accounted for by the simple ‘ideal mixing’ activity. If there is no excess free energy, the activity is simply equal to the ‘ideal mixing’ activity and the activity coefficient is 1.0. 

Ideal mixing activity – X

‘Ideal mixing’ activities are due to the entropy of mixing, and relate to the degree of randomness (probability) of the distribution of elements in phases (see Chapter 7 of Spear, 1993). They are calculated based on what is known about the way atoms are distributed among the crystallographic sites of a mineral, and whether or not they are controlled by coupled substitutions like Na+A Si4+T = Ca2+AAl3+T in plagioclase (A stands for the A site, T for the tetrahedral site). In this example, the ‘ideal mixing’ activity for the anorthite end member of plagioclase is simply:

XCa2Al2Si2O8Plagioclase  = XCaA = Ca / (Ca+Na+K)

because the exchange in Al and Si is exactly the same as (ie, is controlled by) that of Ca, Na and K in the plagioclase ‘A’ site. 

For aluminous Fe2+-Mg-Mn-Ca garnet, the four elements mix on one crystallographic site, the cubic site of garnet. The cubic site holds three of these elements (see above formula for garnet), so the ‘ideal mixing’ activity of grossular is:

X Ca3Al2Si3O12Garnet  = (XCacub) 3 

where XCacub = Ca / (Ca+Fe2++Mg+Mn) in the cubic site. Sometimes garnet contains Fe3+ which mixes with Al in the two octahedral sites of garnet. However, in contrast to plagioclase, the distribution of these two elements seems to be unaffected by the distribution of the elements in the cubic site, ie they are independent, or uncoupled. Consequently, the ‘ideal mixing’ activity of grossular in an Fe3+-bearing garnet is:

X Ca3Al2Si3O12Garnet  = (XCacub) 3 * (XAloct) 2 

where XAloct = Al / (Al + Fe3+ ) in the octahedral site.

Every phase has it’s own complexities, as discussed in Chapters 4 and 7 of Spear (1993) and Chapter 3 of Powell (1978). 

Activity coefficient – γ

Activity coefficients can be greater or less than 1.0 but are always positive. The energetic reasons for non-unity activity coefficients, and the way they are determined, is beyond the scope of these brief notes but are discussed in Chapter 7 of Spear (1993) and Chapter 4 of Powell (1978). Suffice to say that they reflect the energetics of the interactions of elements within phases (solid, fluid or melt), which reflect factors such as ion size, ion charge and orbital distribution of electrons. 

For the example of garnet:

a Ca3Al2Si3O12Garnet  = γ Ca3Al2Si3O12Garnet  * X Ca3Al2Si3O12Garnet  

= (γCacub XCacub)3 * (γAloct XAloct)2 

There are activity coefficients for each site in a mineral.

Figuring out activities and activity coefficients is a big job – it relates ideality (end members) to reality (real mineral compositions), and is messy but highly significant to the accuracy of thermodynamic calculations. Values of activity coefficients typically vary with P and T, so that the equilibrium constant for a given reaction becomes a function of P and T as well as composition. Determining the location of a reaction involving real phases in P-T space can therefore get complicated because of multiple terms involving P and T in different parts of the free energy expression. So for the purposes of this lab, we’ll simplify a bit. 

Exercise 1

Calculate the position of the two reactions you calculated in the last lab for the following natural mineral compositions:

Reaction 1:

Garnet


(Ca2.4Fe2+0.4Mg0.1Mn0.1) (Al1.3Fe3+0.7) Si3O12


Quartz


SiO2
Plagioclase

Na0.4Ca0.6Al1.6Si2.4O8
 

Wollastonite

CaSiO3
Reaction 2:

Muscovite

(K0.9Na0.1) (Fe2+0.05Mg0.05Al1.9) (Al0.9 Si3.1) O10 OH2
Quartz


SiO2
K-feldspar

K0.8Na0.2AlSi3O8


Sillimanite

Al2SiO5
Vapour


H2O0.7 CO2 0.15 CH4 0.15
Assume ideal mixing activities for all phases. Plot the two curves, one for the pure end members and the other for the ‘real’ phases, on the same graph. Comment on the difference between the results.

Note: 
for Plag and Kfs, assume ideal molecular (coupled) mixing

for garnet, assume ideal random mixing on sites

for fluid, assume ideal mixing

for muscovite, assume ideal random mixing on sites according to the formula: 

aKAl3Si3O10(OH)2Ms = 9.48 * (XKA) * (XAloct)2 * (XAlT) * (XSiT)3 * (XOHhyd)2

Conventional geothermobarometry and “GTB”
The above calculations form the basis for geothermobarometry – you analyze your minerals and use these in combination with pertinent mineral equilibria to infer the P-T conditions at which the minerals equilibrated (IF they equilibrated….).

There are two types of thermobarometry: conventional (or individual-equilibrium) thermobarometry, and multi-equilibrium/multi-species thermobarometry. In conventional geothermobarometry, you focus on one or a few key, widely-applicable, hopefully well-calibrated equilibria, and rely on those for your estimates. Combining the Grt-Bt thermometer with the GASP barometer is an example of conventional geothermobarometry.

It turns out that many of these ‘popular’ equilibria have been calibrated more than once, so you have to worry about which calibration is the best. This means you have to experiment and use your judgment (which potentially opens the door to licence, since you can select the one whose results fit best with your pre-conceived ideas….. this also pertains to the selection of analysis points on chemically variable minerals!).
Exercise 2

a. Do the three exercises in Frank Spear’s 2001 GTB tutorial program. GTB is on the Mac in ES152.
b. For the sample from Mt. Moosilauke, plot the mineral assemblage (Ms +Bt + Pl + Qtz + Grt + Sil) on the petrogenetic grid of Lab 5. How do the geothermobarometry results compare with what you can infer from the grid? Then have a look at: 

Pattison, D.R.M. (2001). Instability of Al2SiO5 ‘triple point’ assemblages in muscovite+biotite+quartz-bearing metapelites, with implications. American Mineralogist 86, 1414-1422.
c. For the granulite sample, compare the geothermobarometry results with the phase diagrams (Figs. 1 & 2) for mafic granulites in:

Pattison, D.R.M., Chacko, T., Farquhar, J. & McFarlane, C.R.M. (2003) Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology 44, 867-900.

Read this paper if you want some insight into the perils of geothermobarometry in high grade rocks! 

