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Describing Orientation Data with Fisher Statistics
Dr. Vince Cronin, Baylor University

The reliable assessment and minimization of error in all quantitative observations is a

fundamental task of a scientist.  It is said that a number reported without an error estimate is not
scientifically meaningful.  To obtain such an error estimate, multiple observations must be recorded.

This exercise presents a method for computing the average and 95% confidence interval (CI) for
data that can be represented as a unit location vector, including the dip vector of a surface (e.g., a

bed, joint or fault), directed lineations (e.g., slip vector, paleomagnetic vector) or an undirected

lineation (e.g., a mineral lineation).
The method that we are going to work with was developed by R.A. Fisher in the early 1950s to

assist in the analysis of paleomagnetic data.  Use of this method is limited to the analysis of
orientation data that a statistician would describe as unimodal or belonging to a Fisher distribution.
This means that the features whose average orientation is of interest must be nearly parallel to one

another and the orientations approximate a normal distribution around a single average direction
(see Fisher and others, 1987).  For example, this method is appropriate for defining the mean and

95% CI error for several observations of the orientation of surfaces that are locally sub-parallel to
one another, in the same structural domain.   It is an appropriate way to average the surface

roughness of an otherwise planar bed, on which measured strike and dip angles may vary by

perhaps 10-15°.  It would not be appropriate for characterizing the varied orientations of beds on
different limbs of a fold.

The Fisher method for characterizing unimodal vector data is presented below, followed by a

worked example.  The computational heavy lifting will be done by an Excel spreadsheet, which is
accessible via http://serc.carleton.edu, where you should search on Fisher statistics.

METHODS:  Skim now, re-read more closely later after finishing the worked example

In the field, geologists record orientation data for planar features in a number of different

methods (e.g., quadrant, azimuth, right-hand rule, dip direction).  Lineations and vector quantities
may be recorded in terms of rake or pitch on a specified plane, or as plunge and trend directly if a

strata compass is used.  Regardless of the method used to obtain the data in the field, it is simplest

to convert each set of orientation data to plunge angle and trend azimuth, so that they can be more
easily manipulated by a computer program.  By convention, a downward-directed plunge is a
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positive-signed angle.  We represent surface-orientation data as the trend and plunge of the dip

vector.  The orientation data are entered into the Excel spreadsheet in degrees, and are then
converted to radians by multiplying each input value by (π/180°), because the trigonometric

functions in spreadsheets and many programming languages are designed to operate on radians

rather than degrees.

The direction cosines (li, mi, ni) for each observation are determined relative to axes oriented

north, east and down.

Eq. 1

where pi and ti are, respectively, the plunge and trend of the ith observation, expressed in radians.
The components of the mean dip vector  are found by summing the direction cosines for

each axial direction.

Eq. 2

The length of vector  is R, where

. Eq. 3

The corresponding unit vector  is found by dividing each component of the mean dip vector

by R.

Eq. 4

The resultant direction cosines are converted to the trend and plunge of the mean dip vector,

expressed in degrees.

Eq. 5

If  ≥ 0,

Eq. 6a

or if  < 0,

.
Eq. 6b
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Variable N is the number of observations.  The estimated value of the precision parameter k
ranges from 0 (for a vector set that is strongly non-colinear) to ∞ (for vectors that are perfectly

colinear, as when N = R), where

k = (N – 1)/(N – R) Eq. 7

(Fisher, 1953;  Tarling, 1971;  Opdyke and Channell, 1996).   Paleomagnetic workers describe

acceptably precise (class I) orientation data as having k values of 10 or greater, although Tarling

(1971) notes that k may not be a reliable indicator of precision for N<7, suggesting that 7 or more
observations should be made at a site.

The radius of the 95% confidence-interval cone (α95) is

Eq. 8

where probability P = 0.05.  This indicates that we are 95% confident that the mean vector for a

hypothetical large population of measurements would be within a circle of radius α95 degrees from

the mean vector of our much more limited sample.  In other words, there is a 1 in 20 chance that the
mean vector of that hypothetical large population of observations lies outside of a circle of radius

α95 degrees from our sample mean vector.

This analysis assesses the variability of the input orientation data, independent of any

consideration of random errors in measurement such as the ±2° error commonly estimated for the
Brunton compass.  If it is desirable to account for this random measurement error, which is assumed

to be uncorrelated with the error associated with the intrinsic variability of the measured quantity,
the radius of the total error region (rtotal) is given by

Eq. 9

where variable M is the estimated random measurement error.

WORKED EXAMPLE

No fewer than 3 orientation measurements should be made at a site (and ≥7 observations are

preferred), so we will illustrate the averaging process using 3 bedding attitudes: 300 40NE, 309

45NE, and 312 30NE.  The dip vector trend is 90° from strike with a plunge equal to the dip angle
(e.g., trend azimuth is 30° and plunge is 40° for the plane 300 40NE).  Following this conversion
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procedure, the 3 bedding attitudes are represented by the following three dip vectors converted to

radians by multiplying each value by (π/180°):

plunge (radians) trend (radians)

observation 1

observation 2

observation 3

The direction cosines are determined relative to north, east and down-directed axes for each

observation (equations 1).

observation 1 0.6634 0.3830 0.6428
observation 2 0.5495 0.4450 0.7071
observation 3 0.6436 0.5795 0.5

The direction cosines for the mean dip vector are found by summing the direction cosines for each

axial direction (equations 2).

mean vector 1.8565 1.4075 1.8499

The length of the mean dip vector is (equation 3)

The corresponding unit vector is (equations 4)

mean unit vector 0.6241 0.4731 0.6218

The direction cosines are converted to the plunge and trend of the mean dip vector (equations 5 and
6a), given that  ≥ 0 in this example:

The estimated value of the precision parameter k = (3–1)/(3–2.9749) = 80 (equation 7).  The
radius of the 95% confidence-interval cone (equation 8) is
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The result is a mean dip azimuth of 37° and a mean dip angle of 38° within a 95% CI cone whose

radius is 14°, equivalent to a mean strike-and-dip attitude of 307 38NE (Figure 1).

Figure 1.  Northeast quadrant of lower hemisphere Lambert equal-area projection, showing the

three dip vectors in the example along with the mean dip vector and associated α95 error circle

around the mean.
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