
The 3-point Problem 
as Simultaneous Linear Equations 

***  MatLab version ***  
 

by Will Frangos 
 
 The famous three-point problem is important in structural interpretation.  The idea 
is to determine the strike and dip of a stratum from three points, such as might be 
encountered in drill holes.  The underlying assumption is that the horizon in question is a 
plane.  Graphical methods of solution are commonly employed, lending an intuitive 
understanding and promoting three-dimensional visualization.   
 
 An analytic geometry approach has certain advantages over graphical solution, 
including precision and rapidity, albeit at the expense of intuitive visualization of the 
problem.  Put succinctly, a mathematical solution would be very handy if you’ve got 50 
of them to do; who wants to perform 50 graphical analyses before dinner?   
 
 The method is actually quite straightforward.  First, we need to be able to describe 
an inclined plane by a mathematical function.  There are several ways to do it, but let’s 
use a simple slope-intercept form in a standard Cartesian coordinate system;   
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By this expression we mean that any point on the given plane at lateral location (x,y)   
will have an elevation of  z.  The tricky bit, of course, is to figure out the values of the 
slopes and the zero intercept.   
 
 Well, if we are given three points on the plane, such as the observed depths in a 
set of three drill holes of known locations, then we can form a set of simultaneous linear 
equations and figure out the slopes and zero intercept.  Once we know them, we can then 
predict the elevation at which to expect the horizon at any other location.  We can also 
figure out the strike and dip from the parameters.   
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The equations look like this:  
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                                 Eqn 2 



and we want to determine .  Note that  x,y, and z are not the unknowns 
here!  They are the coordinates in this problem.   
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 We could solve the matter for any set of three points by junior high school 
methods, but maybe there’s a better way using computers.  To do that, let’s state the set 
of equations in matrix form, like this:   
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where is a column vector of the observed depths, 

           is the matrix of coefficients, , ,  and 1 (for the ),

   and   is the vector of unknown parameters to be found, , ,  and  
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    Eqn 3 

 
The solution that we need is then  
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This gets us into the realm of many very handy computer routines, and thus, easy sailing.  
In practice, we won’t actually calculate the matrix inverse of  A ; it turns out to be tedious 
and sometimes inaccurate, even for modern computers.  But there are many good, 
reliable, accurate, fast (not that we worry about speed at this stage), and well-proven 
algorithms for solving systems of linear equations like this one.  One alternative is to use 
program LINEQ, a linear equation solver available on our computer lab machines.  
Another more general one is to use MATLAB, a good, high-level, easily learned 
mathematics application which is made for matrices.  We’ll develop the latter in our 
examples.   
 
 
Examples    
 
 Let’s start with a simple, easily visualized case, as sketched below:   
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The horizontal coordinates for the drill holes are (0,0), (0,1), and (1,0), respectively.  
Recalling that the coefficient of z0 is 1 in the general equations, Eqn 2 above, the matrix 
becomes   

                                     
0 0 1
0 1 1
1 0 1

A =  

 
The simplest case is a plane with no dip at all, i.e., all the depths are the same value.  
Suppose that depth is 6; then the column vector, z , is a column of 6’s.  Let’s solve the 
system and see if we get the right answers.    
 
 First, start up MatLab and enter the matrix, perhaps like this:   
 
>> A=[0,0,1; 0,1,1; 1,0,1]        (the commas separate individual matrix elements,  

 the semicolons indicate new rows, and the square  
 brackets delineate the whole matrix) 

 
MatLab replies:  A = 

     0     0     1 
     0     1     1 

         1     0     1         verifying that we got it right    
 
Now enter the column vector of elevations:   
 
>> z=[6;6;6] 
 
again, MatLab replies: z = 

     6 
     6 
     6  
 

Now, to solve the system of simultaneous linear equations.  In MatLab, this is 
conveniently indicated as a sort of division (even though it isn’t really; there isn’t any 
such thing as division in matrix algebra).  Enter the following line:  
 
>> u=A\z Note the backslash, which causes the right stuff to happen, and the order!  
 
MatLab replies:  u = 

     0  this is mx 
     0  this is my 
     6  and this is z0   

That’s what we expected: no slope in the x- or y-directions, and a zero intercept of 6.  
Guess we must have got it right.   
 



Exercise:    Test the method a little further by specifying a new set of elevations.  Try z = 
[6;6;7], corresponding to a plane that dips east with slope of 1.  You should get u = 
[1,0,6].  Now try a plane dipping northeast with dips of 1 in each of the north and east 
directions.   
 
Translation back to Geology:   
 Being geologists, we’d like to have the plane described as a stratum or horizon 
with strike and dip, not slope and intercept.  We thank the mathematicians for their 
assistance and proceed as follows:   
 
  For the dip, we resolve the two slopes as vectors and convert to angles in degrees.  
By hand, or using a calculator, we calculate 
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and try to remember to use degrees, not radian, mode.   
 
 Assuming that we’ve still got MatLab running, we can get the dip and strike using 
the square root and the arctan functions.  The dip can be done in two MatLab statements 
or one, depending on personal preference.  Here is the northeast-dipping example done as 
one statement:  
 
>> dip=180/pi * atan(sqrt(1*1+1*1)) 
 
MatLab replies:  dip = 

   54.7356  (the 180/pi converts to degrees) 
 

To get the strike direction, we’ll use some common sense and the four-quadrant 
arctan function.  We want the direction from north (not east as the mathematicians do it), 
so we interchange the x- and y-components from what MatLab specifies, i.e., we enter 
atan2(mx, my).  For the last exercise above we would enter   
 
>> dip=180/pi*atan2(1,1)    
 
and MatLab replies  dip = 

    45 
which is the direction of true dip, corresponding to northeast.  The strike direction is thus 
northwest-southeast, so here’s where the common sense comes in.  We can add or 
subtract 90°, as appropriate, to express the strike direction.   
 
Check this method to see if you get the right dip and direction for some other easy cases.  
In particular, set up some beds dipping to the southeast and southwest to illustrate the 
need for common sense in interpreting the results.   
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