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 The famous three-point problem is important in structural interpretation.  The idea 
is to determine the strike and dip of a stratum from three points, such as might be 
encountered in drill holes.  The underlying assumption is that the horizon in question is a 
plane.  Graphical methods of solution are commonly employed, lending an intuitive 
understanding and promoting three-dimensional visualization.   
 
 An analytic geometry approach has certain advantages over graphical solution, 
including precision and rapidity, albeit at the expense of intuitive visualization of the 
problem.  Put succinctly, a mathematical solution would be very handy if you’ve got 50 
of them to do; who wants to perform 50 tedious graphical analyses before dinner?   
 
 The method is actually quite straightforward.  First, we need to be able to describe 
an inclined plane by a mathematical function.  There are several ways to do it, but let’s 
use a simple slope-intercept form in a standard Cartesian coordinate system;   
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By this expression we mean that any point on the given plane at lateral location (x,y)   
will have an elevation of  z.  The tricky bit, of course, is to figure out the values of the 
slopes and the zero intercept.   
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Well, if we are given three points on the plane, such as the observed depths in a 
set of three drill holes of known locations, then we can form a set of simultaneous linear 
equations and figure out the slopes and zero intercept.  Once we know them, we can then 
predict the elevation at which to expect the horizon at any other location.  We can also 
figure out the strike and dip from the parameters.   
 The equations look like this:  
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                                 Eqn 2 

and we want to determine .  Note that  x,y, and z are not the unknowns 
here!  They are the coordinates in this problem.   
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 We could solve the matter for any set of three points by junior high school 
methods, but maybe there’s a better way using computers.  To do that, let’s state the set 
of equations in matrix form, like this:   
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where is a column vector of the observed depths, 

           is the matrix of coefficients, , ,  and 1 (for the ),

   and   is the vector of unknown parameters to be found, , ,  and  
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    Eqn 3 

 
A parenthetical review of matrix algebra   
  Eqn 3 above summarizes the set of linear equations, Eqn2, according to the rules 
for matrix multiplication.  The idea is that matrices multiply by summing the products of 
elements across the rows of the first matrix and down the columns of the second, for 
example,  
  a   b             e   f            ae+bg    af+bh   
  c   d       X   g   h     =    ce+dg    cf+dh    
 
   or, with numbers,  
  6  -1            2   1            11    6   
   0   3      X   -3  0     =     -9    0     
 
We note that a square matrix with 1’s on the diagonal and 0’s elsewhere is called an 
“identity matrix”, I, because, when multiplied by another matrix, the result is the same as 
the latter matrix, i.e., like multiplying by 1.  Another important concept is the inverse of a 
matrix, meaning the matrix which, when multiplied by the original matrix, yields the 
identity matrix, I.    
 
The solution that we need is then  
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where  is the inverse of matrix  
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Now, determining the inverse matrix can be an intricate process.  Though it can be done 
by hand, it is best left to a standardized, well-tested computer routine.  One alternative is 
to use the PC program LINEQ, a solver of systems of linear equations.  LINEQ doesn’t 
actually calculate the inverse matrix, which, frankly, can be inaccurate and fraught with 
peril even for modern computers.  Instead it uses the LU-decomposition, a more stable 
techniques.   



Example    
 
 Let’s start with a simple, easily visualized case, as sketched below:   
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The horizontal coordinates for the drill holes are (0,0), (0,1), and (1,0), respectively.  
Recalling that the coefficient of z0 is 1 in the general equations, Eqn 2 above, the matrix 
becomes   

                                     
0 0 1
0 1 1
1 0 1
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The simplest case is a plane with no dip at all, i.e., all the depths are the same value.  
Suppose that depth is 6; then the column vector, z , is a column of 6’s.  Let’s solve the 
system and see if we get the right answers.    
 
 First, enter the matrix size, 3 in our case, then the nine matrix elements 
themselves into LINEQ cell by cell.  Note that LINEQ starts numbering from 0, so that 
the first row and first column is called 0,0.   
 
When finished, LINEQ replies by displaying the matrix for your inspection, allowing you 
to correct any errors.  Once you’re happy with the entries, go on to enter the depths 
corresponding to the drillhole locations.  LINEQ refers to these as the “right-hand side” 
of the equation, or RHS.  The program solves the system of simultaneous linear equations 
and displays:   
 
Your answers, Sir/Madam: 

X(0)=       0.0000  this is mx 
X(1)=       0.0000  this is my 
X(2)=       6.0000  and this is z0   

That’s what we expected: no slope in the x- or y-directions, and a zero intercept of 6.  
Guess we must have got it right.   
 

LINEQ now asks if you want any more sets of depths.  You can enter as many 
sets of these as you like, one after the other.   
 



Exercise:    Test the method a little further by specifying a new set of elevations.  Try z = 
6,6,7, corresponding to a plane that dips east with slope of 1.  You should get u = 1,0,6.  
Now try a plane dipping northeast with dips of 1 in each of the north and east directions.   
 
Translation back to Geology:   
 Being geologists, we’d like to have the plane described as a stratum or horizon 
with strike and dip, not slope and intercept.  We thank the mathematicians for their 
assistance and proceed as follows:   
 
  For the dip, we resolve the two slopes as vectors and convert to angles in degrees.  
By hand, or using a calculator, we calculate 
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and try to remember to use degrees, not radian, mode.   
 
 We can get the dip and strike using the square root and the arctan functions.  
Depending on your calculator, you might solve the northeast-dipping example done as 
follows:  
 
      atan(sqrt(1*1+1*1)) 
 

getting:      54.7356  (if you’re in degree mode) 
 

To get the strike direction, we’ll use some common sense and the arctan function.  
We want the direction from north (not east as the mathematicians do it), so we 
interchange the x- and y-components from what the calculator usually specifies, i.e., we 
enter atan2(mx, my).  For the last exercise above we would enter   
 

atan(1,1) or atan(1/1) 
 

getting:    45  
 
which is the direction of true dip, corresponding to northeast.  The strike direction is thus 
northwest-southeast, so here’s where the common sense comes in.  We can add or 
subtract 90°, as appropriate, to express the strike direction.   
 
Check this method to see if you get the right dip and direction for some other easy cases.  
In particular, set up some beds dipping to the southeast and southwest to illustrate the 
need for common sense in interpreting the results.   
 


