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Thermal Conduction in Permafrost 
 
This exercise is based on the work of Lachenbruch, A.H., and Marshall, B.V., 1986, 
Changing climate:  geothermal evidence from permafrost in the Alaskan Arctic, Science, 
v. 234, p. 689-696.  These workers found that temperatures measured in abandoned 
boreholes drilled for oil exploration reveal a recent warming, probably associated with 
global warming.  They used boreholes in northern Alaska in which mean annual surface 
temperatures were well below 0 ºC in order to ensure that heat moved in the ground 
solely by conduction.  Under these conditions, flow of heat can be described by Fourier's 
Law, which states that heat flow across a boundary is equivalent to the thermal 
conductivity of the material multiplied by the temperature gradient across the boundary: 
 
Q = -k*(dT/dz) 
 
The minus sign here is necessary because the flow of heat is in the opposite direction of 
increasing depth.   
 
In this exercise, students are asked to create a model of heat flow in the outer km of 
Earth's crust and then to perform some experiments in which air temperature is allowed 
to change in simulation of Lachenbruch and Marshall's findings. 
 
The equation for temperature at any given depth and at any given time is determined 
analytically by solving the Thermal Diffusion Equation (see math on next page).  This is 
a second order partial differential equation with a rather involved solution (see the 
Turcotte and Schubert reading).  The derivation of the diffusion equation is given for you 
on the next page, and is based on the idea that each layer in the model is a box into and 
out of which heat may flow.  The dimensions of the box are dx*dy*dz.  This equation is 
not necessary when casting the problem in STELLA or Fortran (only Fourier's law is 
necessary), but it useful in explaining how heat travels over time. 
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E(t) = energy in box at time t, 
ρ is density, c is specific heat, T 
is temperature, E(t+dt) = energy 
in box at some time dt into the 
future, h.o.t. = higher order 
terms of Taylor series expansion 
 
Change in energy in the box 
over dt time interval 
 
 
Flux of heat (q) through the box 
in the x-dimension 
 
Flux of heat through the box in 
the y-dimension 
 
Flux of heat through the box in 
the z-dimension 
 
Change in energy in the box 
over time is equivalent to the 
sum of the fluxes of heat 
through the box 
 
 
 
Simplify the equation by 
dividing by dxdydzdt 
 
Assume 1-dimensional heat 
flow and get rid of x and y terms 
 
Fourier's law of heat conduction 
 
 
Substitute in Fourier's law for q 
 
 
 
 
Kappa is diffusivity 
 
 
 
Thermal diffusion equation 
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The analytical solution to the thermal diffusion equation for any depth and for 
any time t is: 
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where T-bar is the long term average temperature, T0 is the amplitude of thermal 
oscillations, w = (2*π/period of oscillation), and Κ is the thermal diffusivity (see 
Turcotte and Schubert reading for more details). 
 
 
Since the diffusion equation relates the change in temperature with time to the 
second derivative of the temperature with depth, it is possible to understand the 
direction of heat flow over time.  To see why, consider the following drawing of 
a hilly topography: 
 

z

dz/ dx

d2z/ dx2

 
 
In the figure at the top, we have elevation plotted as a function of distance.  In 
the second figure, the slope is plotted as a function of distance, and in the bottom 
figure, the curvature (or change in slope with distance) is plotted.   
 
The diffusion equation for topography states that: 
 
dz/dt = (Κ)*(d2z/dx2)   
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or, in other words, the change in elevation with time is related to the curvature of 
the topography.  Where the curvature is negative, erosion occurs.  Where it is 
positive, deposition occurs. 
 

high posit ive curvature

high negat ive curvat ure

no curvature

erosion

deposit ion

 
The Thermal Diffusion Equation works in an analogous way.  Where there is 
high negative curvature in the temperature profile, the temperature declines over 
time, and where there is high positive curvature, the temperature increases.  This 
acts to smooth the profile over time.  Consider the following example.  After 
millennia of constant temperature, air temperature suddenly rises, leading to a 
kink in the thermal profile: 
 

 
 
Thermal diffusion will gradually smooth out the profile (see the dashed line) and 
will eventually cause all of it to shift to the right. 
 
The Heat Flow in Permafrost exercise has several purposes: 
1) To teach the students about the basics of heat transfer and the geothermal 
gradient 
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2) To introduce oscillatory behavior 
3) To introduce the STELLA concept of “bi-flows” 
4) To introduce the STELLA "ghost" function in designing and building model 
structures 
  
In this folder of the blackboard site you will find the following: 
1) Copies of the exercise for students in Adobe 
Acrobat (.pdf) format 
2) Copies of the instructor answer key in Adobe Acrobat 
format 
3) A STELLA version of the Heat Flow in Permafrost model 
4) A Fortran 90 version of the Heat Flow in Permafrost model 
5) An assessment form that can be given to students to determine whether they 
understood the concepts the exercises are trying to convey 
 


