
Daisyworld Readme 
  
The Daisyworld model created by Andrew Watson and James Lovelock (1983, Tellus, v. 
35B, p. 284-289) is a wonderful example of a self-regulating system incorporating 
positive and negative feedbacks.  The model consists of a planet on which black and 
white daisies are growing.  The growth of these daisies is governed by a parabolic shaped 
growth function regulated by planetary temperature and is set to zero for temperatures 
less than 5 ºC or greater than 40 ºC and optimized at 22.5 ºC.  The model explores the 
effect of a steadily increasing solar luminosity on the growth of daisies and the resulting 
planetary temperature.  The growth function for the daisies allows them to modulate the 
planet's temperature for many years, warming it early on as black daisies grow, and 
cooling it later as white daisies grow.  Eventually, the solar luminosity increases beyond 
the daisies' capability to modulate the temperature and they die out, leading to a rapid rise 
in the planetary temperature.  Several people have created STELLA models of 
Daisyworld, including Dave Bice at Carleton College and Dawn Wright at Oregon State 
University.  I owe them thanks in coming up with this exercise as their models formed its 
foundation. 
 
While the mathematics governing Daisyworld are fairly straightforward, I will go through 
the steps that Watson and Lovelock leave out of their paper for the benefit of anyone 
interested in going through the math with students.   
 
The growth of daisies is governed by the expressions: 
 
daw/dt=aw(xβw-γ)       (Eqns. 1) 
dab/dt=ab(xβb- γ) 
 
where aw and ab are the areas of ground covered by white and black daisies, x is the 
proportion of bare ground still available for colonization, β  is a growth function 
dependent on temperature, and γ is a death rate. 
 
x=p- ab- aw          (Eqn. 2) 

 
where p is set equal to 1.  X and the areas of ground covered by the daisies are therefore 
fractional areas less than 1.  The growth function: 
 
βy = 1 - 0.003265*(22.5-Ty)2 
         (Eqn. 3) 
 
where Ty is the temperature of the black or white daisies.  Since the white and black 
daisies have different albedos, they have different temperatures, and for this reason, each 
color must have its own βy growth function.  The value for βy falls below zero for 
temperatures lower than 5 degrees and higher than 40 degrees and so has to be set to 
equal zero for these cases when creating the STELLA model (see the student exercise and 
answer key). 
 



Because of its parabolic shape, the growth function acts as both a positive and a negative 
feedback.  Initially, as the planet warms due to the increasing luminosity of the sun, a 
small population of black daisies warms sufficiently to begin growing.  As these daisies 
grow, their presence further warms the planet due to their low albedo, leading to still 
more growth in a positive feedback loop.  Due to the parabolic shape of the growth 
function, however, continued growth of new black daisies slows as temperatures become 
too warm for them.  Eventually, temperatures are warm enough to allow the white daisies 
to begin to grow despite their high albedos.  Their growth acts as a negative feedback.  
The more these daisies grow, the more they act to cool the warming planet.   
 
The energy balance of Daisyworld can be determined by equating the amount of energy 
coming in from the sun with the amount of energy going out via radiation: 
 
SL*(1-A) = σ(Td+273)4       (Eqn. 4) 
 
where S is the solar constant (917 W/m2), L is a function that ramps up the solar output 
over time (0.5+0.02*time), A is the planetary albedo, σ is the Stefan-Boltzmann constant 
(5.67e-8 W/m2K4), and Td is the temperature of Daisyworld. 
 
The planetary albedo is derived by taking the weighted average of the albedos of the 
black and white daisies and of bare ground (Aw, Ab, and Ag are albedos; aw, ab, and x are 
fractional areas covered by daisies or bare ground): 
 
A = Aw*aw + Ab*ab + Ag* x      (Eqn. 5) 
 
Watson and Lovelock determine the local temperature (Ty) of bare ground, white or black 
daisies from the expression: 
 
(Ty +273) 4=q*(A-Ay)+(Td+273) 4                 (Eqn. 6) 
 
where q is a positive constant I will describe below.  To show that using this equation for 
local temperature is valid in terms of the overall energy balance for the planet, they 
perform the following calculations: 
 
The total energy radiated by Daisyworld to outerspace (F) is equivalent to the sum of the 
energies radiated from each type of ground cover (i.e., bare ground, black daisies, or 
white daisies): 
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substituting Equation 6 above into Eqn. 7 gives: 
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In this equation, σ, q, A, and Td are all constants that can be pulled out of the summations 
to give: 
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because the sum of all of the areas on the planet is 1, and  
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because the planetary albedo, A, is equal to the area-weighted average albedo of the black 
and white daisies and of bare ground, so 
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Since the final value for F is equivalent to SL*(1-A), the planet can be seen to be in 
radiative balance using equation 6 for local temperature. 
 
To understand the meaning of the q constant, Watson and Lovelock eliminate the 
planetary albedo term between Eqns. 4 and 6: 
 

  A)-(1*SL)273( 4 =+dTσ       (Eqn. 4) 
 
so 
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but 
 
(Ty +273) 4=q*(A-Ay)+(Td+273) 4                 (Eqn. 6) 
 
so 
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 setting these 2 equations equal 

 
multiplying both sides by q gives: 
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In the case were q = 0, the planet is a perfect conductor of absorbed radiation.  In other 
words, excess energy absorbed in areas covered by black daisies is conducted away to 
areas covered by white daisies to create a planet with a perfectly uniform distribution of 
surface energy. 
 
Plugging q=0 into Eqn. 8 above gives 
 
(Ty+273)4 = (Td+273) 4 
 
In other words, the local temperature (Ty) is everywhere equivalent to the average 
planetary temperature (Td). 
 
If on the other hand q=SL/σ, then there is no heat transfer between the different daisy 
species or the ground.  Plugging this into Eqn. 8 gives: 
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the latter half of this equation goes to 0, to give: 
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So in this situation, the local temperatures are determined by the local radiation balance. 
 
Watson and Lovelock use a value intermediate between 0 and SL/σ for q to allow for 
some conduction from black daisy areas to white daisy areas.  That value is 0.2*SL/σ.  



Students experiment with changing the q value and with changing the albedos of white 
and black daisies and describe and explain their results. 
 
The Daisyworld modeling exercise has several purposes: 
1) To explore a self-regulating system 
2) To learn how positive and negative feedbacks work 
3) To convey the importance of “subroutines” in decreasing clutter in model structures 
  
Under Teaching Materials you will find the following: 
1) Copies of the exercise for students in Adobe Acrobat (.pdf) format
 
2) Copies of the instructor answer key in Adobe Acrobat formats 
3) A STELLA version of the Daisyworld model 
4) A Fortran 90 version of the Daisyworld model 
5) An assessment form that can be given to students to determine whether they 
understood the concepts the exercises are trying to convey 
 
 
 
 
 
 


