Nanoparticle Formation in Pores Spaces

Michael Schindler
Environmental Nano Geoscience Facility
University of Manitoba
Winnipeg, MB, Canada

Table of contents

Pore spaces and weathering

Nanoparticle formation in pore spaces under hydrothermal conditions

Nanoparticle formation in pore spaces at low Temperature

Conclusions

Weathering is a result of the re-equilibration of minerals due to changes in e.g. fluid composition, pH, Eh, T, P...

It involves often dissolution-re-precipitation processes with the replacement of a non-porous mother-phase by a porous daughter phase(s)

Pedrosa et al. (2016) Porosity generated during the fluid-mediated replacement of calcite by fluorite.

CrystEngComm, 2016,18, 6867-6874

Porous Clay mineral surface coating on rock-forming silicates

https://files.isgs.illinois.edu/sites/default/files/files/Giannetta_NCGSA_Presentation.pdf

Porous Fe-hydroxide coating on pyrite

Alteration of volcanic glass

Nanoparticle formation during mineral replacement reactions under hydrothermal conditions

Two examples:

Gold nanoparticles and high-grade gold ore deposits

Chromite nanoparticles during greenschist metamorphism

High grade gold deposits in the Abitibi greenstone belt, Canada

HAADF

MAG: 900kx HV: 200kV

Formation of nanoparticles along the pyrite-hematite interface

Nanoparticle size: 3-5 nm

Gold nanoparticles only visible in thinner part along interface

Consequence of gold nanoparticle formation: gold coarsening through gold nanoparticle attachment

The formation of Chromite nanoparticles

Chromite ore deposits related to ultra mafic rocks (ophiolites from the oceanic crust)

Cr concentrations in surficial soils in California

2850 mg/kg maximum Cr

Izbicki et al. 2015, Applied Geochemistry 63, 203-217

Cr^{3+} structurally incorporated into pyroxenes, $A+B^{3+}Si_2O_6$

Cr³⁺ is structurally incorporated into pyroxenes

Jadeite NaAlSi₂O₆

(https://www.gia.edu)

Greenschist metamorphism 300–450 °C 2–10 kilobars

Mg-pyroxenes and -amphiboles

Mg-rich minerals of the chlorite- and serpentinite-group or brucite Mg(OH)₂ + quartz

Transformation involves again dissolutionreprecipitation and thus porosity

On the micrometer scale: enrichment of Chromium along phase boundaries

McClenaghan & Schindler 2021 American MIneralogist

Chl **Chromite NP** 10 nm On the nanometer-scale: chromite nanoparticles along clinochlore grain boundaries

Environmental Relevance

Release of chromite nanoparticles during weathering of Cr-bearing clinochlore

Chromite nanoparticles attached on amorphous Al-hydroxide colloid after 3 months leaching of clinochlore at pH =5

McClenaghan & Schindler 2021 American Mineralogist, in press

Nanoparticle formation during low-T weathering processes

Interior and surroundings of a bacterium (EPS) may also contain nano-size pore spaces

EPS = extracellular polymeric substances

Low Temperature processes:

A. biotic-controlled weathering of gold in Australia

Primary gold with Ag and Cu ~80-90% Au

"Porosity" in Biofilms

Abiotic and biotic processes in biofilms

"Purified" gold nanoparticles Au > 95 wt% Au

Fairbrother et al. 2012 Chemical Geology 320–321 (2012) 17–31

Reith et al (2010) termed Biofilms: "Nanoparticles factories"
Geology 38, 843–846.

Consequences

Cycles of Bioflim formation and destruction results in the

release of gold as gold nanoparticles and thus in a

high mobility of Au in many near surface environments

the formation of secondary Au deposits

the development of geochemical halos around buried mineralization

Low Temperature processes:

B. Abiotic-controlled weathering

Alteration of volcanic glass in a Martian analogue, JSC-1

Schindler et al. (2019) Geochimica et Cosmochimica Acta 264, 43-66

Dissolution of glass and re-precipitation of Ferrihydrite and hydrous amorphous silica

Ferrihydrite "nano-domains" in pore spaces between hydrous amorphous silica

fh

Consequence:

Porosity created during the alteration of volcanic glass is one of the "birthplaces" of Fe-oxide nanoparticles in volcanic soils on Earth and

perhaps on Mars

Schindler et al. Geochimica et Cosmochimica Acta 264, 43–66

Conclusions

One common feature:

Enrichment (sometimes termed supergene process) of an element in the form of nanoparticles as a consequent of re-equilibration

Au-bearing pyrite Gold nanoparticles

Cr-bearing pyroxene Chromite nanoparticles

Primary Au-Ag-Cu ore High fineness gold nanoparticles

Fe-bearing Volcanic glass ———— Fe-oxide nanoparticles

...and many more examples can be found in the literature

Thank you to

....and all my students and collaborators