

Environmental Molecular Sciences Laboratory

Nancy Hess
Environmental
Transformations and
Interactions Science Lead

EMSL at a glance

EMSL is a national user facility with expertise and capabilities in environmental and biological science

- Funded by Office of Science Biological and Environmental Research (DOE SC BER)
- Integrative experimental, modeling, and computational approaches across molecular to ecosystem scale
- User access through peer-reviewed proposal process
- Free for non-proprietary work

EMSL's Science Areas and Integrated Research Platforms

Biogeochemical Transformations and Ecosystem Interfaces

IRP Leads
Emily Graham (BGT)
Emily.graham@pnnl.gov
Jim Moran (EI)
James.moran@pnnl.gov

BGT: Examines the detailed molecular biogeochemistry within microdomains in soils and sediments.

EI: Multi-disciplinary expertise focused on studying the transport of nutrients and materials that contribute to enhanced rates of biogeochemical processes at ecosystem interfaces.

- MS and NMR based organic matter analysis
- Isotope studies for quantification of stable isotope tracers
- Electron microscopes for chemical imaging

Plant and Ecosystem Phenotyping

Aims to dissect plant genotype-environment interactions, including the plant-microbe crosstalk in the rhizosphere region, to establish an advanced understanding of the molecular mechanisms involved in the determination of phenotypic plasticity in a complex multifactorial ecosystem. .

- Phytotron for controlled plant growth.
 - Rhizoboxes and rhizotrons, track plants and their developing roots
 - MS and stable isotope tracers to track metabolite and substrate flux

IRP Lead Amir Ahkami amir.ahkami@pnnl.gov

Biomolecular Pathways

Discovers the principles underlying the translation of genomic information into the metabolic pathways and regulatory networks that determine cellular function.

- Comprehensive and integrated characterization of complex biological and environmental systems
- Multi-omics on the same sample
- In-depth structure and function studies of intact proteins
- MS imaging capabilities for spatial, quantitative molecular information

IRP Lead
Mary Lipton
Mary.lipton@pnnl.gov

Cell Signaling and Communication

Pursues an understanding how complex phenotypes arise from individual molecules and their interactions with other molecules within the communication networks that exist between, and across populations and communities of cells.

IRP Lead
Alex Beliaev
Alex.beliaev@pnnl.gov

- Laser capture microdissection microscopes to isolate individual cells or cell types
- Optical microscopy techniques, to understand dynamic processes in live or intact cells.
- Single-molecule fluorescence in situ hybridization (FISH), for quantitative analyses of biomolecules in individual cells within communities or tissues.

biological function.

Structural Biology

Generates structural, biochemical, and dynamic information about proteins, protein complexes, and other biomolecules at nanoscale spatial and temporal resolution to determine

 Produce three-dimensional images of elements and molecular fragments—at the atomic scale—within soft biological materials.

Tahoma Super Computer

- Determine the atomic-scale structure of proteins and protein complexes greater than ~100kDa.
- EMSL's structural biology is expanding to include correlative multi-modal imaging and analyses.

IRP Lead
Scott Lea
scott.lea@pnnl.gov

Science highlights

PNAS

Science

nature

nature structural & molecular biology

nature _____

nature microbiology

ecology & evolution nature

materials

Environmental science highlights

Self-healing cement for deep CO2 sequestration

Microscopic and spectroscopic analysis of self-healing polymer-cement composite reveals reduced structural and chemical changes after carbonate formation.

M.S. Elbakhshwan, et al. Geothermics (2021) DOI:10.1016/j.geothermics.2020.101932

Wild grass releases a variety of particles into the air over its life cycle

Fungal spores are found to be most abundant during initial growth, while bacteria predominate during flowering and fruit development.

S. China, et al., ACS Earth and Space Chemistry (2020). DOI: 10.1021/acsearthspacechem.0c00144

Environmental science highlights

Soil minerals control carbon availability in N fertilized grasslands

Fertilized plots had different assortment of organic molecules associated with soil Fe-minerals than non-fertilized plots.

Q. Zhao, et al., Science of the Total Environment (2020) DOI: 10.1016/j.scitotenv.2020.137839]

Ca bridging between OM and minerals in alkaline soil

Revealed that organic molecules in which aggregate via cation bridging favoring the stabilization of organic molecule complexes rather than on mineral surfaces.

R.M. Boiteau, et al. Science of the Total Environment (2020) DOI: 10.1016/j.scitotenv.2020.138250

EMSL offers multiple opportunities for user access

- Large-Scale Research Proposals
- Joint-access FICUS Proposals
- Exploratory Proposals

More information at www.emsl.pnnl.gov

FICUS - Facilities Integrating Collaboration for User Science

Previous events

December 7, 2020

UPCOMING EVENTS

Questions?

Nancy Hess, <u>nancy.hess@pnnl.gov</u>
Environmental Transformations
and Interactions

Scott Baker, scott.baker@pnnl.gov
Functional and Systems Biology

Lee Ann McCue, <u>leeann.mccue@pnnl.gov</u>
Computation, Analytics, and Modeling