Igneous rocks 1. The magma from which this felsic volcanic rock is derived is very viscous, and contains >65% SiO₂ The magma from which this intrusive rock is formed starts to solidify at 600-800°C (1100-1475°F), and contains >65% SiO₂ 3. Extrusive (volcanic) igneous rock of intermediate composition (55-65% SiO₂) 4. Intrusive (plutonic) igneous rock of intermediate composition (55-65% SiO₂); Kate calls it the 'dalmation rock' because the proportion of mafic minerals is highly variable 5. Extrusive (volcanic) igneous rock, mafic in composition (45-55% SiO₂) 6. Intrusive (plutonic) igneous rock, mafic in composition (45-55% SiO₂) 7. This igneous rock does not currently form at the earth's surface; it contains < 40% SiO₂, and the first crystals start to solidify at >1200°C 8. Calcium-rich varieties of this mineral are present in mafic intrusive rocks (gabbros); this mineral forms a solid solution series, and Ca-poor, Na-rich varieties of it are present in granites 9. This mineral is not present in mafic igneous rocks (gabbros and more mafic rocks); it is, however one of the essential minerals in granite, together with quartz and plagioclase feldspar

General & Tectonics

	melted) of felsic and mafic minerals under directed pressure (compressional or tensional) produces this 'high grade' metamorphic rock, in which the felsic and mafic minerals are layered or segregated
2.	This rock is the product of the metamorphism of very fine-grained sedimentary rocks at convergent plate boundaries; the metamorphic product is fine-grained
3. 	This mineral does not crystallize from molten rock; it is characteristic of sedimentary rocks, and does not react with dilute hydrochloric acid
4.	This is the volcanic rock named for its relative abundance in the continental arc that makes up the western margin of South America

- 5. The Sierra Nevada Batholith is dominated by this☐ intrusive igneous rock
- 6. This is the rock type present in Karst areas
- 7. Pahoehoe and Aa flows are made up of this igneousrock type
- 8. This mineral / mineral group is a common alteration /
 metamorphic product of mafic minerals such as
 olivine and pyroxene; it is present in many igneous
 rocks and metamorphosed igneous rocks
- 9. This ultramafic rock is exposed at the earth's surface
 as xenoliths in igneous rocks, or within Ophiolite
 Sequences, or as parts of Layered Mafic Igneous
 Intrusions

Sedimentary & Metamorphic Rocks

- 1. This mineral has one perfect cleavage; in its very-fine
 grained form it is called sericite; it is often responsible for
 the 'sheen' seen on cleavage surfaces in fine-grained
 metamorphic rocks
- 2. This metamorphic rock is derived from biochemical sedimentary rocks
- 3. This metamorphic rock is derived from a texturally and compositionally mature sandstone
- 4. This is a biochemical sedimentary rock; this rock type often contains fossils or fossil fragments
- 5. The mineral segregation or compositional banding of
 □ medium-to-coarse grained felsic and mafic minerals is
 □ characteristic of this metamorphic rock
- 6. This metamorphic rock is characterized by a foliation,
 □ which results from the growth of medium-to-coarse
 □ grained mica minerals; this metamorphic rock typically
 □ forms from fine-to-medium-grained sedimentary rocks
- 7. This well-cleaved, fine-grained metamorphic rock has shale as its 'protolith' or 'parent' rock
- 8. This fine-grained sedimentary rock is composed of mudsized particles
- 9. This siliciclastic detrital sedimentary rock is named on the
 □ basis of the size of the siliciclastic grains it is made up of;
 □ the grains can range from 0.064 mm to 2 mm in diameter

Regional Geology, Rocks & Minerals (Minnesota)

- 1. Mafic igneous rock found in the Proterozoic North Shore Volcanics
- 2. Mafic igneous rock found in the Proterozoic Duluth Complex
- 3. Felsic volcanic rock found in the Proterozoic North Shore Volcanics
- 4. This biochemical sedimentary rock forms the resistant 'caprock' in the □ Paleozoic sedimentary sequence in the Twin Cities
- 5. This is the fine-grained sedimentary rock, similar to that which underlies

 Platteville Limestone in the Twin Cities and southeastern Minnesota
- 6. This sedimentary rock type is made up of siliciclastic grains that may range from 0.064 mm to 2 mm in diameter; in the Twin Cities area there is a very-poorly cemented example of this rock type lying beneath the Glenwood Shale
- 7. This is similar to the rock-type in the two 'outliers' of Proterozoic
 metasedimentary rock in the Upper Midwest; both contain texturallyand compositionally-mature grains
- 8. This felsic intrusive rock intruded rocks of the Penokean Orogen approximately 1.8 by ago. It forms a large batholith in east-central MN
- 9. Metamorphic rock type for the oldest dated rock in Minnesota