The New National K-12 Science Standards: A 2-Step Process

1. “Conceptual Framework for New Science Education Standards”
--- A National Academy of Science report by the NRC (National Research Council), came out THIS MONTH!

2. Actual standards will be written by Achieve, Inc. (finished late-2012???)
National Research Council’s Conceptual Framework for New Science Education Standards

On behalf of the National Research Council’s (NRC) Committee on “A Conceptual Framework to Develop New Science Education Standards,” I want to thank all of those who provided feedback on the draft framework which was available for public comment during the period from July 12 through August 2, 2010. Over 2,000 people responded to the on-line survey and hundreds more participated in discussion groups across the country. The committee has received a wide range of comments from a wide variety of perspectives; all of the feedback will be taken seriously by the committee as it finalizes its work.

The NRC committee has begun the process of summarizing and digesting the wide variety of suggestions expressed through the feedback and will be deciding on appropriate revisions to the framework as well as finishing writing the rest of its report. This process will take several months. Once the revisions are complete, the framework will undergo the traditional National Research Council confidential review by a diverse group of experts. After the committee revises its report in response to reviewers’ comments, the framework report will be finalized and released to the public. We anticipate that the final version will not be publicly available until early 2011.

As you may know, the education nonprofit organization Achieve (www.achieve.org) will then work with a group of states to develop a set of standards for K-12 science education based on and guided by the final NRC committee framework report. Achieve’s science work will be led by Stephen Pruitt who has recently joined the Achieve staff (and thus has resigned as a member of the NRC framework committee due to this appointment). Achieve has already begun planning and is currently developing a network of state partners. Further opportunities for public comment will be managed by Achieve as its work on the science education standards proceeds in 2011.

Thank you again for taking the time to review the committee’s draft framework and for providing feedback. The input we received is invaluable to the committee as it moves forward with this important work.
Question: What year did American schools first use any kind of standards?
Question: What year did American schools first use any kind of standards?

Answer: 1852

→ Horace Mann convinces Massachusetts to adopt the Prussian Education System
→ Started by Prussian King Frederick II in 1763 – made schooling compulsory for all children ages 5-13.
BRIEF HISTORY OF SCIENCE STANDARDS

- The Harvard Descriptive List of Physics Laboratories (1891)
- The Committee of Ten (1893)
- *A Nation at Risk* (National Commission on Excellence in Education, 1983)
- PROJECT 2061 (1985)
- National Governors’ Conference (1989)
- *Benchmarks for Science Literacy* (AAAS, 1993)
- *National Science Education Standards* (1995)
Major components of the Framework

- Vision of high quality science education
- Practices, crosscutting concepts, and disciplinary core ideas
- Guidance for standards developers
- Discussion of implementation issues
- Attendance to diversity and equity
- Suggestions for future research
NRC Conceptual Frameworks Committee

Science Content:
Helen Quinn, Stanford, Chair (Physics)
Wyatt Anderson, University of Georgia (Biology)
Tanya Atwater, UCSB (Geophysics)
Rodolfo Dirzo, Stanford University (Bioecology)
Phillip Griffiths, Institute for Advanced Study (Mathematics)
Dudley Herschbach, Harvard University (Biology)
Linda Katehi, UC Davis (Engineering)
John Mather, NASA Goddard Space Flight Center (Astrophysics)
Rebecca Richards-Kortum, Rice University (Bioengineering)

Education and Learning
Philip Bell, University of Washington
Thomas Corcoran, Columbia University, Teachers College
Tom Keller, NRC
Brett Moulding, Utah Partnership for Effective Sci Teaching & Learning
Jonathan Osborne, Stanford
James W. Pellegrino, University of Illinois
Stephen L. Pruitt, Georgia Department of Education
Brian Reiser, Northwestern University
Heidi Schweingruber, NRC
Walter Secada, University of Miami
Deborah C. Smith, Pennsylvania State University
Four Design Teams:

Earth and Space Science:
Michael Wysession, Washington University, St. Louis, MO (Team Lead)
Don Duggan-Haas, Museum of the Earth, Ithaca, NY
Scott Linneman, Western Washington University, Bellingham, WA
Eric Pyle, James Madison University, Harrisonburg, VA
Dennis Schatz, Pacific Science Center, Seattle, WA

Life Science
Rodger Bybee, BSCS, Colorado Springs, CO (Team Lead)
Bruce Fuchs, National Institutes of Health, Bethesda, MD
Kathy Comfort, WestEd, San Francisco, CA
Danine Ezell, Energy Project, San Diego, CA

Physical Science
Joseph Krajcik, University of Michigan, Ann Arbor, MI (Team Lead)
Shawn Stevens, University of Michigan, Ann Arbor, MI
Sophia Gershaman, Princeton Plasma Physics Lab, Princeton, NJ
Arthur Eisenkraft, University of Massachusetts, Boston, MA
Angelica Stacy, UC Berkeley, Berkeley, CA

Engineering and Applied Science
Cary Sneider, Portland State University, Portland, OR (Team Lead)
Rodney (Rod) L. Custer, Illinois State University, Normal, IL
Jacob (Jake) Foster, Mass. Dept Elementary & Secondary Ed, Malden, MA
Yvonne Spicer, Museum of Science, Boston, MA
Maurice Frazier, Chesapeake Public School System, Chesapeake, VA
What is the Framework about?

• “The Framework is designed to help realize a vision for education in the natural sciences and engineering in which (all) students, over multiple years of school, actively engage in science and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields.” (emphasis added)
Framework Goals: By the end of Grade 12, students should be able to

- engage in public discussions on science-related issues,
- be critical consumers of scientific information related to their everyday lives,
- to continue to learn about science throughout their lives.
- to appreciate that science and the current scientific understanding of the world are the result of many hundreds of years of creative human endeavor.

(Chapter 1 page 3)
What’s New??

• Content that is shorter but deeper
• Fewer factoids; More process
• Greater integration among the sciences
• Greater integration with engineering and technology
• Greater integration of and focus on human-related content
Three dimensions

- Scientific and engineering practices
- Crosscutting concepts
- Disciplinary core ideas
<table>
<thead>
<tr>
<th></th>
<th>Scientific and engineering practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Asking questions and defining problems</td>
</tr>
<tr>
<td>2.</td>
<td>Developing and using models</td>
</tr>
<tr>
<td>3.</td>
<td>Planning and carrying out investigations</td>
</tr>
<tr>
<td>4.</td>
<td>Analyzing and interpreting data</td>
</tr>
<tr>
<td>5.</td>
<td>Using mathematics, information and computer technology</td>
</tr>
</tbody>
</table>
6. Constructing explanations
7. Engaging in argument
8. Obtaining, evaluating, and communicating information
Crosscutting concepts

1. Patterns
2. Cause and effect
3. Scale, proportion and quantity
4. Systems and system models
5. Energy and matter
6. Structure and function
7. Stability and change
Recommendations for Standards Writers

• **Recommendation 1**: Standards should set rigorous learning goals that represent a common expectation for all students.

• **Recommendation 2**: Standards should be scientifically accurate yet also clear, concise, and comprehensible to science educators.

• **Recommendation 3**: Standards should be limited in number.

• **Recommendation 4**: Standards should emphasize all three dimensions articulated in the framework.
Recommendations continued

- **Recommendation 5**: Standards should include performance expectations that integrate the three dimensions. These expectations should require that students demonstrate knowledge-in-use and include criteria for identifying successful performance.
- **Recommendation 6**: Standards should incorporate boundary statements, including what does *not* need to be taught in order for students to achieve the standard.
Recommendation 7: Standards should be organized as sequences that support students’ learning over multiple grades. They should take into account how students’ command of the concepts, core ideas, and practices becomes more sophisticated over time with appropriate instructional experiences.
Recommendations continued

• Recommendation 8: Whenever possible, the progressions in standards should be informed by existing research on learning and teaching.

• In cases in which insufficient research is available to inform a progression, or in which there is a lack of consensus on the research findings, the progression should be developed on the basis of a reasoned argument about learning and teaching. The sequences described in the framework can be used as guidance.
Recommendations continued

• **Recommendation 9**: The committee recommends that the diverse needs of students and of states be met by developing grade-band standards. For those states that prefer or require grade-by-grade standards, a suggested elaboration on grade-band standards could be provided.

• **Recommendation 10**: If grade-by-grade standards are written, these standards should provide a coherent progression within each grade band.
Recommendations continued

• **Recommendation 11:** Any assumptions about the resources, time, and teacher expertise needed for students to achieve particular standards should be made explicit.

• **Recommendation 12:** The standards for the sciences and engineering should align coherently with those for other K-12 subjects. Alignment with the Common Core standards in mathematics and English/language arts is especially important.
Recommendation 13: In designing standards and performance expectations, issues related to diversity and equity need to be taken into account. In particular, performance expectations should provide students with multiple ways of demonstrating competence in science.
Organizational Structure

• Core Idea (Ex. LS1)
 – Sub-ideas (Ex. LS1.A)
• Grade-band endpoints (ex. By the end of grade 2)
Life Sciences: Core Ideas

- LS1 - From Molecules to Organisms: Structures and Processes
- LS2 - Ecosystems: Interactions, Energy, and Dynamics
- LS3 - Heredity: Inheritance and Variation of Traits
- LS4 - Biological Evolution: Unity and Diversity
Physical Sciences: Core Ideas

- PS1 - Matter and Its Interactions
- PS2 - Motion and Stability: Forces and Interactions
- PS3 - Energy
- PS4 - Waves and Their Applications in Technologies for Information Transfer
Engineering, Technology, and Applications of Science Core Ideas

- ETS1 - Engineering Design
- ETS2 - Links Among Engineering, Technology, Science, and Society
Earth and Space Sciences: Core Ideas

- ESS1 - Earth’s Place in the Universe
- ESS2 - Earth’s Systems
- ESS3 - Earth and Human Activity
Current work is supported by several recent community-organized literacy efforts

→ Example, for Geoscience:
Earth in Space and Time: Objects in the Universe
- **Systems**: Planetary Evolution

Earth in Space and Time: History of Earth
- **History**: Relative and Absolute Dating
- **History**: Rock and Fossil Records

Geoscience Literacy Principles
- **Earth**: Earth is 4.6 billion years old.

Earth Structures: Properties of Earth Materials
- **Processes**: Rock-Forming Environment

Geoscience Literacy Principles
- **Earth**: Earth is continuously changing.

Earth Structures: Tectonics
- **Processes**: Tectonism

Geoscience Literacy Principles
- **Earth**: Earth is a complex system of interacting rock, water, air, and life.

Earth Systems: Energy in Earth Systems
- **Processes**: Earth’s Surface
- **Processes**: Energy Transfer
- **Systems**: Atmosphere as a System
- **Systems**: Oceans as a System
- **Systems**: Lithosphere as a System

Geoscience Literacy Principles
- **Earth**: Earth is the water planet.
- **Ocean**: Earth has one big ocean with many features.
- **Atmos**: Earth has a thin atmosphere that sustains life.
- **Atmos**: Energy from the Sun drives atmospheric processes.
- **Atmos**: Earth’s Atmosphere continuously interacts with the other components of the Earth System.
- **Atmos**: Atmospheric circulations transport matter and energy.
- **Climate**: The Sun is the primary source of energy for Earth’s climate system.
- **Climate**: Climate is regulated by complex interactions among components of the Earth System.

Earth Systems: Climate and Weather
- **Processes**: Weather Processes
- **Systems**: Climate

Geoscience Literacy Principles
- **Ocean**: The ocean is a major influence on weather and climate.
- **Atmos**: Earth’s atmosphere changes over time and space, giving rise to weather and climate.
- **Climate**: Climate varies over space and time through both natural and man-made processes.

Earth Systems: Biogeochemical Cycles
- **Matter & Energy**: Water Cycle
- **Matter & Energy**: Carbon Cycle

Geoscience Literacy Principles
- **Earth**: Life evolves on a dynamic Earth and continuously modifies Earth.
- **Ocean**: The ocean supports a great diversity of life and ecosystems.
- **Climate**: Life on Earth depends on, is shaped by, and affects climate.

Geoscience Literacy Principles
- **Humans**: Humans depend on Earth for resources.
- **Earth**: Natural hazards pose risks to humans.
- **Earth**: Humans significantly alter the Earth.
- **Ocean**: The ocean makes Earth habitable.
- **Ocean**: The ocean and humans are inextricably interconnected.
- **Atmos**: Earth’s atmosphere and humans are inextricably linked.
- **Climate**: Human activities are impacting the climate system.
- **Climate**: Climate change will have consequences for the Earth System and human lives.
<table>
<thead>
<tr>
<th>College Board’s 2009 Standards for College Success (Earth Science)</th>
<th>NRC Earth and Space Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Earth Processes: Earth’s Surface</td>
<td>BI1.1 (Earth’s Place in the Universe): The Universe and its Stars</td>
</tr>
<tr>
<td>Dynamic Earth Processes: Energy Transfer</td>
<td>BI1.2 (Earth’s Place in the Universe): Earth and the Solar System</td>
</tr>
<tr>
<td>Dynamic Earth Processes: Tectonism</td>
<td>BI1.3 (Earth’s Place in the Universe): The History of Planet Earth</td>
</tr>
<tr>
<td>Dynamic Earth Processes: Weather Processes</td>
<td>BI2.1 (Earth’s Systems): Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>Dynamic Earth Processes: Rock-Forming Environment</td>
<td>BI2.3 (Earth’s Systems): The Roles of Water in Earth’s Surface Processes</td>
</tr>
<tr>
<td>Systems: Atmosphere</td>
<td>BI2.4 (Earth’s Systems): Weather and Climate</td>
</tr>
<tr>
<td>Systems: Oceans</td>
<td>BI2.5 (Earth’s Systems): Biogeology</td>
</tr>
<tr>
<td>Systems: Lithosphere</td>
<td>BI3.1 (Human Interactions): Natural Hazards</td>
</tr>
<tr>
<td>Systems: Climate</td>
<td>BI3.2 (Human Interactions): Natural Resources</td>
</tr>
<tr>
<td>Systems: Planetary Evolution</td>
<td>BI3.3 (Human Interactions): Human Impacts on Earth Systems</td>
</tr>
<tr>
<td>Earth’s History: Relative and Absolute Dating</td>
<td>BI3.4 (Human Interactions): Global Climate Change</td>
</tr>
<tr>
<td>Earth’s History: Rock and Fossil Records</td>
<td></td>
</tr>
<tr>
<td>Cycles of Matter and Energy: Water Cycle</td>
<td></td>
</tr>
<tr>
<td>Cycles of Matter and Energy: Carbon Cycle</td>
<td></td>
</tr>
<tr>
<td>Humans and the Environment: Natural Resources</td>
<td></td>
</tr>
<tr>
<td>Humans and the Environment: Natural Hazards</td>
<td></td>
</tr>
<tr>
<td>Humans and the Environment: Humans’ Impact</td>
<td></td>
</tr>
</tbody>
</table>
NSES (1996): Earth and Space Science

<table>
<thead>
<tr>
<th>LEVELS K-4</th>
<th>LEVELS 5-8</th>
<th>LEVELS 9-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of earth materials</td>
<td>Structure of the earth system</td>
<td>Energy in the earth system</td>
</tr>
<tr>
<td>Objects in the sky</td>
<td>Earth’s history</td>
<td>Geochemical cycles</td>
</tr>
<tr>
<td>Changes in earth and sky</td>
<td>Earth in the solar system</td>
<td>Origin and evolution of the earth system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin and evolution of the universe</td>
</tr>
</tbody>
</table>
Table 6.6. Science in Personal and Social Perspectives

<table>
<thead>
<tr>
<th>Levels K-4</th>
<th>Levels 5-8</th>
<th>Levels 9-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal health</td>
<td>Personal health</td>
<td>Personal and community health</td>
</tr>
<tr>
<td>Characteristics and changes in populations</td>
<td>Populations, resources, and environments</td>
<td>Population growth</td>
</tr>
<tr>
<td>Types of resources</td>
<td>Natural hazards</td>
<td>Natural resources</td>
</tr>
<tr>
<td>Changes in environments</td>
<td>Risks and benefits</td>
<td>Environmental quality</td>
</tr>
<tr>
<td>Science and technology in local challenges</td>
<td>Science and technology in society</td>
<td>Natural and human-induced hazards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science and technology in local, national, and global challenges</td>
</tr>
<tr>
<td>National Science Education Standards (1996)</td>
<td>NRC Earth and Space Science</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Properties of Earth Materials (K-4)</td>
<td>BII.1 (Earth’s Place in the Universe): The Universe and its Stars</td>
<td></td>
</tr>
<tr>
<td>Structure of the Earth System (5-8)</td>
<td>BII.2 (Earth’s Place in the Universe): Earth and the Solar System</td>
<td></td>
</tr>
<tr>
<td>Energy in the Earth System (9-12)</td>
<td>BII.3 (Earth’s Place in the Universe): The History of Planet Earth</td>
<td></td>
</tr>
<tr>
<td>Geochemical Cycles (9-12)</td>
<td>BII.4 (Earth’s Systems): Earth Materials and Systems</td>
<td></td>
</tr>
<tr>
<td>Objects in the Sky (K-4)</td>
<td>BII.5 (Earth’s Systems): Plate Tectonics and Large-Scale System Interactions</td>
<td></td>
</tr>
<tr>
<td>Changes in Earth and Sky (K-4)</td>
<td>BII.6 (Earth’s Systems): The Roles of Water in Earth’s Surface Processes</td>
<td></td>
</tr>
<tr>
<td>Earth’s History (5-8)</td>
<td>BII.7 (Earth’s Systems): Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>Earth in the Solar System (5-8)</td>
<td>BII.8 (Earth’s Systems): Biogeology</td>
<td></td>
</tr>
<tr>
<td>Origin and Evolution of the Earth System (9-12)</td>
<td>BII.9 (Human Interactions): Natural Hazards</td>
<td></td>
</tr>
<tr>
<td>Origin and Evolution of the Universe (9-12)</td>
<td>BII.10 (Human Interactions): Natural Resources</td>
<td></td>
</tr>
<tr>
<td>Types of Resources (K-4)</td>
<td>BII.11 (Human Interactions): Human Impacts on Earth Systems</td>
<td></td>
</tr>
<tr>
<td>Changes in Environments (K-4)</td>
<td>BII.12 (Human Interactions): Global Climate Change</td>
<td></td>
</tr>
<tr>
<td>Populations, Resources, and Environments (5-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Hazards (5-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population Growth (9-12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Resources (9-12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Quality (9-12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural and Human-Induced Hazards (9-12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Earth and Space Sciences: Core Ideas

- ESS1 - Earth’s Place in the Universe
- ESS2 - Earth’s Systems
- ESS3 - Earth and Human Activity
ESS1 - Earth’s Place in the Universe

- ESS1.A: The Universe and Its Stars
- ESS1.B: Earth and the Solar System
- ESS1.C: The History of Planet Earth
ESS2 - Earth’s Systems

- ESS2.A: Earth Materials and Systems
- ESS2.B: Plate Tectonics and Large-Scale System Interactions
- ESS2.C: The Roles of Water in Earth’s Surface Processes
- ESS2.D: Weather and Climate
- ESS2.E: Biogeology
ESS3 - Earth and Human Activity

- ESS3.A: Natural Resources
- ESS3.B: Natural Hazards
- ESS3.C: Human Impacts on Earth Systems
- ESS3.D: Global Climate Change
What’s Next??
What Happened....

- 1989, President George H.W. Bush organized a Governor’s meeting to attempt a standards-based approach to school reform. Result was only a vague endorsement of "voluntary national standards" (didn’t go far).

(Politics of “National” “Standards”)
What Happened....

- 1989, President George H.W. Bush organized a Governor’s meeting to attempt a standards-based approach to school reform. Result was only a vague endorsement of "voluntary national standards" (didn’t go far). *(Politics of “National” “Standards”)*

- 1994, President Bill Clinton raised federal money for standards-based reform. Effort left up to states, leading to wild variety of expectations and ideological battles over Math and English curricula.
What Happened....

- 2001, President George W. Bush pushes through No Child Left Behind.
 - Requires that each state ensures that its students achieve "universal proficiency" in Reading and Math
What Happened....

• 2001, President George W. Bush pushes through No Child Left Behind.

 → Requires that each state ensures that its students achieve "universal proficiency" in Reading and Math
 → Scores in Reading and Math improve
What Happened....

• 2001, President George W. Bush pushes through No Child Left Behind.
 → Requires that each state ensures that its students achieve "universal proficiency" in Reading and Math
 → Scores in Reading and Math improve
 → Education in all other areas (science, social studies, arts, Gifted Ed) declines
What Happened....

• 2001, President George W. Bush pushes through No Child Left Behind.
 → Requires that each state ensures that its students achieve "universal proficiency" in Reading and Math
 → Scores in Reading and Math improve
 → Education in all other areas (science, social studies, arts, Gifted Ed) declines
 → States get to determine their own standards, resulting in a “Race to the Bottom” as standards are set low enough to obtain “universal proficiency”
What Happened....

• 2001, President George W. Bush pushes through No Child Left Behind.
 → Requires that each state ensures that its students achieve "universal proficiency" in Reading and Math
 → Scores in Reading and Math improve
 → Education in all other areas (science, social studies, arts, Gifted Ed) declines
 → States get to determine their own standards, resulting in a “Race to the Bottom” as standards are set low enough to obtain “universal proficiency”
 → Example: Mississippi. According to the standards they set for themselves, 89% of Mississippi 4th-graders were proficient in reading (best in the country). According to NAEP (National Assessment of Educational Progress), only 18% of 4th-graders were proficient in reading (worst in the country).
What Happened....

2009, President Barack Obama and Secretary of Education Arne Duncan announce $4.35 billion for "Race to the Top" funds as part of the Stimulus Package

→ Incentives for states to make "dramatic progress" in meeting goals that include improving standards.
What Happened....

2009, President Barack Obama and Secretary of Education Arne Duncan announce $4.35 billion for "Race to the Top" funds as part of the Stimulus Package

→ Incentives for states to make "dramatic progress" in meeting goals that include improving standards.

→ Involves a detailed 500 point system (Delaware – 454.6; Tennessee – 444.2; South Dakota – 135.8)
What Happened....

2009, President Barack Obama and Secretary of Education Arne Duncan announce $4.35 billion for "Race to the Top" funds as part of the Stimulus Package

→ Incentives for states to make "dramatic progress" in meeting goals that include improving standards.

→ Involves a detailed 500 point system (Delaware – 454.6; Tennessee – 444.2; South Dakota – 135.8)

→ 48 states initially sign on, promising to adopt “common core” standards for Math and English Language Arts (ELA)
What Happened....

2009, President Barack Obama and Secretary of Education Arne Duncan announce $4.35 billion for "Race to the Top" funds as part of the Stimulus Package

→ Incentives for states to make "dramatic progress" in meeting goals that include improving standards.

→ Involves a detailed 500 point system (Delaware – 454.6; Tennessee – 444.2; South Dakota – 135.8)

→ 48 states initially sign on, promising to adopt “common core” standards for Math and English Language Arts (ELA)

→ March 29, 2010 – Delaware and Tennessee win Phase 1 funding
What Happened....

2009, President Barack Obama and Secretary of Education Arne Duncan announce $4.35 billion for "Race to the Top" funds as part of the Stimulus Package

→ Incentives for states to make "dramatic progress" in meeting goals that include improving standards.

→ Involves a detailed 500 point system (Delaware – 454.6; Tennessee – 444.2; South Dakota – 135.8)

→ 48 states initially sign on, promising to adopt “common core” standards for Math and English Language Arts (ELA)

→ March 29, 2010 – Delaware and Tennessee win Phase 1 funding

→ August 24, 2010 – Phase 2 funding goes to the District of Columbia, Florida, Georgia, Hawaii, Maryland, Massachusetts, New York, North Carolina, Ohio, and Rhode Island
Common Core Standards

Building on the excellent foundation of standards states have laid, the Common Core State Standards are the first step in providing our young people with a high-quality education. It should be clear to every student, parent, and teacher what the standards of success are in every school.

Mission Statement

The Common Core State Standards provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. The standards are designed to be robust and relevant to the real world, reflecting the knowledge and skills that our young people need for success in college and careers. With American students fully prepared for the future, our communities will be best positioned to compete successfully in the global economy.
“Achieve, Inc.:

Created in 1996 by the nation's governors (CCSSO - The National Governors Association and the Council of Chief State School Officers) and corporate leaders, Achieve is an independent, bipartisan, non-profit education reform organization based in Washington, D.C. that helps states raise academic standards and graduation requirements, improve assessments and strengthen accountability.
In the States
Next Generation Science Standards

A joint effort between Achieve, the National Science Teachers Association, the American Association for the Advancement of Science, and the National Research Council is underway to create the foundations for all students to have a solid K-12 science education.

Starting in fall 2009, the National Research Council convened an expert panel to lay the groundwork for the development of a Conceptual Framework that will reflect the best thinking on the nature of the science and engineering education that is needed in the 21st century. A draft of the framework was released in July 2010, and once the final version is released in 2011, Achieve will develop—along with states and other interested stakeholders—next-generation science education standards that are faithful to the NRC Framework, internationally-benchmarked, and rigorous.

Why is there a two-step process for the development of science standards?

Since the input of the science community is critical to getting the science right, and given that it has been 15 years since science education standards were last revised at
National “Next Generation” Science Standards now being written by Achieve, Inc.:

• The content will be taken from the Framework, but will be combined into complete standards that integrate concepts, big ideas, and practices.
• These are not part of the “Common Core” (there will be no Common Core science standards)
• These will hopefully be adopted by many states or play a major role in influencing new state standards (“Build it and they will come.”)