Shaping the Future of Geoscience Education Research: A Community Effort

Kristen St John, James Madison University
Heather Macdonald, College of William & Mary
Anthony Feig, Central Michigan University
Nicole LaDue, Northern Illinois University
Laura Lukes, George Mason University
Karen McNeal, North Carolina State University
Eric Riggs, Texas A & M University
John McDaris, SERC-Carleton College

Project Goals

- Characterize the current state of geoscience education research (GER).
- Identify community needs, and make recommendations to build a stronger GER community.
- Facilitate the next steps in GER.
- Build on recent reports on Discipline-Based Education Research (DBER), as well as previous education and geoscience education research and synthesis efforts.
- Provide opportunities for broad GER community input.

Building Efforts

JULY 2015 UNIVERSITY OF COLORADO

- Our workshop: Synthesizing Geoscience Education Research: Where are we? What is the path forward?
- Oral and poster sessions: Geoscience Education Research
- Other workshops and mini-workshops
- Evening Town Hall on GER

Develop a GER Workshop Program that Builds on DBER

DBER long-term Goals (from p. 9 of Singer et al., 2012)	DBER established or emerging Topical Areas (from p. 55 of Singer et al., 2012)	
Understanding how people learn concepts, practice,	Studies on students' conceptual understanding [Ch 4]	
and ways of thinking.	Studies on students' problem solving and use of representation [Ch 5]	
	Metacognition [Ch 7]	
Understanding the nature and development of		
expertise in a discipline		
Help ID and measure appropriate learning objectives	Studies of instructional strategies to improve science	
and instructional approaches that advance students	and engineering learning [Ch 6]	
towards those objectives		
Contribute to the knowledge base in a way that guides	Science and engineering practice [Ch 7]	
translation of DBER finding into classroom practice	Applying knowledge in different settings (translation) [Ch 7]	
ID approaches to make science and engineering	Students' dispositions and motivations to study science	
education broad and inclusive	and engineering [Ch 7]	

Develop a GER Workshop Program that Builds on DBER

Project	Research (Questions	DBER long-term <u>Goals</u> (p. 9 of DBER report)	DBER report established or emerging Topical Areas (p. 55 of DBER report)	Workshop Working Group Topics
Research question #3: What are the key findings of	Research question #4: What methods are used to conduct geo ed		Understanding how people learn concepts, practice, and ways of thinking.	Studies on students' conceptual understanding [Ch 4]	Conceptual understanding System thinking/complexity Geocognition and understanding of complex earth systems, misconceptions and preconceptions about the Earth system
geosci ed research in various topical areas, and what is their strength of evidence?				Studies on students' problem solving and use of representation [Ch 5] Metacognition [Ch 7]	Temporal reasoning Spatial reasoning/visualization Teaching with models and visualizations; role of figures and animations in earth-science learning Problem-solving
			Understanding the nature and development of expertise in a discipline	No clear topical match?	The nature of geoscience expertise: novice-expert conceptions Learning in the field setting; understanding the knowledge and skills that geoscientists use when working on complex, field-based problems and the novice-expert continuum
		Research question #2: What constitutes "good understanding" by undergrad students in geosci? What are the "metrics of success"?	Help ID and measure appropriate learning objectives and instructional approaches that advance students towards those objectives	Studies of instructional strategies to improve science and engineering learning [Ch 6]	The effectiveness of teaching methods and strategies; assessing the impact of classroom interventions on learning in large lecture and lab settings; the role of technology in geoscience instruction; ways to improve geocognition Effectiveness of research and research-like experiences
		Research question #5: How can we translate research results into practice? And how can we use practitioner wisdom and experience to inform research?	Contribute to the knowledge base in a way that guides translation of DBER finding into classroom practice	Science and engineering practice [Ch 7] Applying knowledge in different settings (translation) [Ch 7]	Recruitment and retention, time to degree; successful strategies
			ID approaches to make science and engineering education broad and inclusive	Students' dispositions and motivations to study science and engineering [Ch 7]	Cognition and the affective domain K-12 teacher preparation? Geoscience education research focused on target audiences; diversity and inclusion Place-based and cross-cultural geoscience learning

Research

What is

geoscience

education

research?

question #1:

Research question #6:

What are recommendations for future research directions across geosci ed research and ways to support such efforts?

Workshop Overview

Monday: What is the scope of geoscience education research?

- Scope of geoscience education research (GER) and how it can be used
- Evaluating the strength of GER results
 - → community claims must be evidence based

Tuesday: What do we know, what do we want to know, what do we need to move the field forward?

 Identifying outcomes, gaps, and next steps for topical areas within GER

Wednesday: What are future directions and priorities of GER?

- Shaping the future of GER and the GER community
- Next steps for GER: Community recommendations and action plans

SoTL = scholarship on teaching and learning

Modified from Dolan et al., (in revision; figure adapted from Lukes et al., 2015)

What do we know? What do we want to know? What do we need to move the field forward?

Topical areas of work in GER (that overlap/intertwine)

- 1. Students' conceptual understanding
- 2. Cognitive domain and problem-solving
- 3. Instructional strategies to improve geoscience learning
- 4. Affective domain / students' self-regulated learning / metacognition
- 5. The nature of science / the nature of geoscience
- 6. Access and success
- 7. Professional development of college/university educators

Theme Issue Call for Papers

Synthesizing Results and Defining Future Directions of Geoscience Education Research

Objective: To compile a collection of articles that describes the evolution, current status, and future directions of Geoscience Education Research (GER), with a focus on undergraduate education and the community of practice among GER workers.

Example topics that fit this theme:

- Commentaries that set priorities for promoting and supporting the GER research community
- **C&I papers** on translating research results into practice
- Research papers on cognitive domain and geoscience problem-solving
- Literature Review articles that synthesize best practices for research methodologies

Deadlines:

- Letter of Intent: December 1, 2015
- Manuscript Submission: August 31, 2016

What are future directions/priorities for GER?

Break-out groups:

- 1. How to better support those interested in *becoming* geoscience education researchers?
- 2. How to better supporting those already in the GER field?
- 3. Developing basic skills "toolbox" for those new to GER
- 4. Developing/deploying research skills for established/advanced GER workers
- 5. Metrics of geoscience major student success? General education student success?
- 6. How to better translate research results into educational practice?
- 7. Exploring the possibility of a community research agenda

Emerging Themes

to Support and Strengthen the GER Community

☐ Mentoring by active/senior geoscience education researchers ☐ Identify/Share/Develop appropriate instruments to address research questions in GER ☐ Identify/Share/Develop best practices in quantitative & quantitative GER research methodologies ☐ Develop/Compile a GER resource "Toolbox" ☐ Access/Analyze past GER results → Write Literature Reviews & Develop a GER data repository ☐ Identify Common "Core" Curricula for GER graduate education ☐ Strategic "Outreach" to non-GER colleagues on the value and importance of GER to geoscience education practice ☐ Collaborate-collaborate, and include social scientists

A Community Level Action Plan