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MATHEMATICAL FIELD

Calculus and Di↵erential Equations.

APPLICATION FIELD

Population Dynamics and Ecology.

TARGET AUDIENCE

Students in an elementary mathematical modeling course or in a course of calculus

with elementary di↵erential equations, including numerical solutions for systems

of ordinary di↵erential equations.

ABSTRACT

We derive a mathematical model of population ecology that describes the role of

dispersal in the survival of a population in danger of extinction. Students working

with the module will write a computer code, using a software such as MATLAB

or Mathematica, to obtain numerical solutions of the model. They will use the

numerical simulations to explore the mathematical properties of the model and

interpret the results in the ecological context.

PREREQUISITES

Precalculus and basic programing skills.

TECHNOLOGY

Access to a computer algebra system, such as Mathematica or MATLAB, is re-

quired for the main activities of this modulus.
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Introduction

This teaching module is a hands on introduction to mathematical modeling in population

ecology. Population Ecology has ben defined as “the science of what makes animal and

plant populations change, persist, or go extinct”1.

A demographic tension between competition and cooperation drives the dynamics of

many species. Population declines when competition among individuals for diminishing

resources occurs at hight density levels. In this case fewer individuals benefit from more

resources, but they may also su↵er from a lack of support of conspecifics. Below a

threshold value the death rate is higher than the birth rate because, on average, the

individuals cannot reproduce successfully. This imposes a need for cooperation among

individuals to increase the population and guarantee the survival of the species at low

density.

Starting with the simplest model of exponential growth we progressively add enough

features to the model in order to obtain a reasonable mathematical description of this

phenomenon.

Students working with the module will write a computer code, using a software such

as MATLAB or Mathematica, to obtain numerical solutions of the model. They will

use the numerical simulations to explore the mathematical results in the context of this

important topic of population ecology.

1 Exponential Growth (EG)

Let u(t) be the average population of an species at time t � 0. The simplest mathemat-

ical model of population ecology is the one that assumes a constant relative growth rate

u0(t)/u(t). That is,
du

dt
= ru(t), t � 0, (1)

where r > 0 is the relative growth rate. Since the solutions of equation (1) grows

exponentially, this model is know as Exponential Growth (EG). In fact, all the solutions

of (1) are of the form

u(t) = cert, t � 0, (2)

where c = u(0) is the initial population.

The fast and unlimited population described by (2), and illustrated in Figure 1,

can only be justified under the ideal assumption that the species doesn’t encounter any

1
B.W. Brook, The Allure of the Few, PLoS Biol 6(5): e127 (2008). doi:10.1371/journal.pbio.0060127.
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restriction to keep growing indefinitely. Nevertheless, in reality there are many factors,

such as the existence of predators or the limit of resources, that will constraint the growth

of the population. We will address this situation in the following section by introducing

a suitable restriction to the relative grow rate of the population.

Figure 1: Graphical representation of solutions of (1) obtained with Mathematica. We

use r = .5 and di↵erent values for the initial population u(0).

2 Logistic Growth (LG)

In order to make the EG model more realistic we will assume that the relative growth rate

u0(t)/u(t) decreases as the population increases, and becomes negative after a limit value

K > 0 known as the environmental carrying capacity. The mathematical formulation of

this assumption, know as Logistic Model (LG), is given by

du

dt
= r

✓
1� u(t)

K

◆
u(t), t � 0, (3)

This model imposes a constrain for the population to grow beyond the level K where

diverse environmental and demographic factors create adverse conditions for survival.

As such, this is a model of competition that embraces a logic of “the fewer the better”.

The explicit solution of (3), obtained by the method of separation of variables, is

given by

u(t) =
cK

c+ (K � c)e�rt
, t � 0, (4)

where c = u(0) is the initial population.

As described by equation (4), and illustrated in Figure 2, the solutions converge to

the carrying capacity K as t ! 1. In other words, the population will always grow, or

decay, to the maximum of its capacity.
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Figure 2: Graphical representation of solutions of (3) obtained with Mathematica. We

use r = .5, K = 1, and di↵erent values for the initial population u(0). Notice that the

adoption of K = 1 is equivalent to rescaling equation (3) by replacing u with u/K, and

considering u(t) as a density with respect to the carrying capacity K.

3 LG with Di↵ussion

In this section we introduce spatial distribution to the LG model. For simplicity we

assume that the population inhabits in a one dimensional array of n locations i =

1, 2, . . . , n, with ui(t) representing the population of an species in the location i at time

t � 0.

Following the logic of “the fewer the better” embedded in the LG model, we assume

that individuals disperse to to avoid crows. This is obtained by a process, know as

di↵usion, that assumes that individuals in a location i disperse to their neighbor locations

i � 1 and i + 1 a↵ecting their local grow rate by a factor of the form d(ui�1 � ui) and

d(ui+1�ui) respectively, where the dispersal rate d is a positive constant. In the absence

of grow rate, this leads the model

dui
dt

= d(ui�1 � ui) + d(ui+1 � ui), i = 1, 2, . . . n, t � 0, (5)

where we assume that u0 = u1 and un+1 = un.

Notice that the dispersal mechanism described by equation (5) produces a local

increase of the population, u0i > 0, if the population ui is smaller than the populations

ui�1 and ui+1 at it’s neighbors. Similar, it produces a local reduction of the population,

u0i < 0, if the population ui is larger than the populations ui�1 and ui+1 at it’s neighbors.

Notice the similarity of (5) with Newton’s law of cooling that states that heat flows from

hot to cooler locations,
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Combining (3) with (5) we obtain the following LG model with di↵usion

dui
dt

= dui�1 � 2dui + dui+1 + r
⇣
1� ui

K

⌘
ui, i = 1, 2, . . . n, t � 0, (6)

where u0 = u1, un+1 = un, and d is a positive constant.

Figure 3 shows the time evolution of a solution to equation (6) with random initial

distribution ui(0), i = 1, 2, . . . , n. It is observed that at any location the population

grows, or decay, to the carrying capacity K. This is essentially a replication of the

behavior observed for the LG model (3), and confirms that di↵usion is the right dispersal

mechanisms for the logistic model with spatial population distribution.

0
20

0.5

15 10

1

u(
x,
t)

5

1.5

t

10

x

0

2

5 -5
0 -10

Figure 3: Graphical representation of a solution of (6) obtained with MATLAB. We use

n = 15, r = 1, K = 1, d = 0.5, and a random distribution of the initial population

ui(0), i = 1, 2 . . . , n. Notice that the adoption of K = 1 is equivalent to rescaling

equation (6) by replacing ui with ui/K, and considering ui(t) as a density distribution

with respect to the carrying capacity K.

4 LG with Threshold (LGT)

In the LG model (3) population declines when competition among individuals for dimin-

ishing resources, or other demographic pressures, occur at high level density, the fewer

the better. When there are too few individuals it may be that they will each benefit

from more resources, but in many cases they will also su↵er from a lack of conspecifics.
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Too few may not be necessarily the better. This is a very common situation in nature

and it is know as the Allee e↵ect. The main feature of the Allee e↵ect is that below

a threshold value the death rate is higher than the birth rate because, on average, the

individuals cannot reproduce successfully. This, in turn, imposes a threat to the survival

of the species at low densities. It is the “the more the merrier” of population ecology.

The following model, know as Logistic Growth with Threshold (LGT), incorporates

into the LG model an Allee e↵ect with threshold value T < K,

du

dt
= r

✓
u(t)

T
� 1

◆✓
1� u(t)

K

◆
u(t), t � 0. (7)

Figure 4 illustrate the main features of the LGT model. If the initial population u(0)

is located above the threshold level T the solution behaves like the LG model converging

to the carrying capacity as t ! 1. Nevertheless, if u(0) < T the population goes extinct.

Figure 4: Graphical representation of solutions of (3) obtained with Mathematica. We

use r = .5, T = .5, K = 1, and di↵erent values for the initial population u(0). Notice

that the adoption of K = 1 is equivalent to rescaling equation (7) by replacing u with

u/K, T with T/K, and considering u(t) as a density with respect to the carrying capacity

K.

A natural question arises, does a population menaced by extinction due to the Allee

e↵ect contains mechanisms for its survival? One may infer that a selective migration

mechanism may allow a population located in a neighborhood of low density, to cluster

together in an attempt to raise their local population above the threshold at which the

birth rate begins to exceed the death rate. We give the name of permanent recovery

to this kind of behavior. In the following sections we will investigate migration patterns

that promotes this type of response.
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5 LGT with Di↵usion

In this section we will explore whether the di↵usive migration mechanisms described

in Section 3 will allow the permanent recovery of a population in danger of extinction.

Accordingly, we consider the following LGT model with di↵usion

dui
dt

= dui�1 � 2dui + dui+1 + r
⇣ui
T

� 1
⌘⇣

1� ui
K

⌘
ui, i = 1, 2, . . . n, t � 0, (8)

where u0 = u1, un+1 = un, and d is a positive constant.

The following theorem asserts that the di↵usive dispersal mechanism of equation (8)

doesn’t allow recovery. For the proof of a more general version of this theorem see [1,

Theorem 1].

Theorem 1. Let ui(t), i = 1, 2, . . . , n, be a solution of (8) such that 0  ui(0) < T, i =

1, 2, . . . , n. Then

0  ui(t) < T, i = 1, 2, . . . , n,

for all t > 0.

Assignment 1. Write a computer code to solve system (8) numerically. We recom-

mend the MATLAB solver ode45, or the Mathematica function NDSolve, to obtain

an accurate solution.

Assignment 2. Use the code obtained in Assignment 1 to illustrate and verify the

conclusion of Theorem 1.

6 LGT with Advection–Di↵usion

In this section we consider the following LGT model with a more general dispersal

mechanisms compose of variable dispersal rates.

dui
dt

= di�1ui�1 � 2diui + di+1ui+1 + r
⇣ui
T

� 1
⌘⇣

1� ui
K

⌘
ui, i = 1, 2, . . . n, t � 0, (9)

where u0 = u1, un+1 = un, and di, i = 1, 2, . . . , n, are positive constants.

The following theorem shows that (9) does exhibit a migration mechanism that allows

the permanent recovery of a population in danger of extinction. For the proof of a more

general version of this theorem see [1, Theorem 2].

Theorem 2. Assume that there exists a non-empty proper subset I1 of the set I :=

{1, . . . , n} such that

di <
di�1 + di+1

2
, (10)
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for all i 2 I1. Then, there exists � > 0 such that if di < � for all i 2 I1 then system

(9) exhibits permanent recovery. That is, there are solutions ui(t), i = 1, 2, . . . , n of (9)

with 0  ui(0) < T, i = 1, 2, . . . , n, such that there exists i0 2 I and t0 > 0, for which

ui0(t) > T for all t > t0.

Assignment 3. Adapt the code obtained in Assignment 1 to illustrate and verify the

conclusion of Theorem 2.

Assignment 4. Figure 6 shows a solution of (9) with dispersal rates di, i = 1, 2, . . . 10,

and initial population ui(0), i = 1, 2, . . . 10, given in Table 1. As suggested by Figure 6

the population grow from an initial population under the threshold T = .25 in all the

locations, with average distribution 1
10

P10
i=1 ui(0) = 0.1501, to a distribution with two

location over the threshold and average distribution 1
10

P10
i=1 ui(t) = 0.2065 at time t =

15.

(a) Use the code implemented in Assignment 3 to replicate Figure 6.

(b) Run a simulation with initial distribution ui(0) = 0.2065, i = 1, 2, . . . , n, which is

a redistribute of the population reached at the end of the simulation in part (a).

Does the average distribution increases?

(c) Use Theorem 2 to modify some of the dispersal rates di, i = 1, 2, . . . , n ,given in

Table 1, to obtain an increase of the average distribution of the population starting

with initial distribution ui(0) = 0.2065, i = 1, 2, . . . , n, as in part (b).

(d) What conclusions can you draw, in ecological terms, from the numerical experi-

ments done in (a), (b), and (c). Could they suggest a strategy to save a population

that is in danger of extinction?. How would you proceed to apply Theorem 2 in a

real situation?
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Figure 5: Graphical representation of a solution of (9) obtained with MATLAB. We

use n = 10, r = 1, T = .25, K = 1. The dispersal rates di, i = 1, 2, . . . 10 and initial

population ui(0), i = 1, 2, . . . 10 are given in Table 1. Notice that the adoption of K = 1

is equivalent to rescaling equation (9) by replacing ui with ui/K, T with T/K, and

considering ui(t) as a density distribution with respect to the carrying capacity K

i 1 2 3 4 5 6 7 8 9 10

di 0.7437 0.7843 0.0112 0.8086 0.9494 0.4630 0.7316 0.3029 0.0539 0.8804

ui(0) 0.0668 0.1884 0.2246 0.1821 0.1017 0.2346 0.0639 0.1333 0.2387 0.0669

Table 1: Dispersal rates di, i = 1, 2, . . . 10 and initial population ui(0), i = 1, 2, . . . 10

used for the simulation illustrated in Figure 6.
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