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Homework #3: Hill-slope evolution and Due: 5:00 PM 09/16/16
plotting

Please read the following questions carefully and make sure to answer the problems completely. In your
MATLAB script(s), please include the problem numbers with your answers. Then use the Publish function
in MATLAB to publish your script to a pdf document. For more on the Publish functionality within MAT-
LAB see http://wuw.mathworks.com/help/matlab/matlab_prog/publishing-matlab-code.html. Up-
load your pdf file to Blackboard under Assignment #3. Your filename should be GEOS397_HW3_Lastname.pdf.
Hint: You can achieve this automatically by calling your MATLAB script GEOS397_HW3_Lastname.m.

NOTE: This activity builds on an ezisting previous SERC activity: Introduction to MATLAB for Geo-
morphology Madoff (n.d.). In this new activity, prior to implementing the numerical solution to the PDE

described below, the student(s) must first use Taylor expansions to derive the finite difference solution to the
PDE.

Background

Modern geomorphological research involves basic knowledge of 1) the landforms, processes and data that
can be observed in the field, 2) the physics and mathematics of those processes, and 3) computer based
modeling. These three components combined allow us to gain new insights into landform evolution processes,
understand past changes, and make predictions about future landforms. In this homework you will learn
some of the basics of the MATLAB computing software, the programming environment, how to build and
run simple models, and to plot your results. You will model the evolution of a hill-slope through time. All
programming will take place in the MATLAB editor; you only need to make one script. I suggest you build
sections of the script and make sure each section runs as expected before you proceed to the next section.

The Hill-slope model

After reading the papers by Hallet & Putkonen (1994) and Putkonen et al. (2008) and discussing them in
class with the guest lecturer Mike Poulos, you should have a feel for how hill-slopes evolve through time.
Let’s review the equations anyway and work through the important parts we need to consider when going
from equations on paper to code in a computer.

The transport equation

The transport equation is
dz
= —K/—’ 1
q I (1)

where k is the topographic diffusivity (or diffusion coefficient) in m?/yr. Equation 1 states that the soil
flux (q) is proportional to the hill-slope gradient (dz/dxz). We use proportional here instead of equal because
the right-hand-side is multiplied by k. Intuitively this should make sense; all else being equal, soil should
move (think soil fluz) faster on a steep hill-slope than on a gentle one. Finally, topographic diffusivity is a
function of many factors (e.g. climate, substrate, vegetation, animal activity, etc.) and can potentially vary
in time and space.


http://www.mathworks.com/help/matlab/matlab_prog/publishing-matlab-code.html
http://serc.carleton.edu/NAGTWorkshops/data_models/matlab15/activities/115077.html
http://serc.carleton.edu/NAGTWorkshops/data_models/matlab15/activities/115077.html
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The conservation equation

The conservation equation is

Tt @

x

where dt is the time increment in years and dx is the step size (i.e. segment length) in the horizontal direction
in meters. In words, equation 2 states that if more soil enters an area than leaves the area, it must pile up,
causing the ground surface to rise. It is called a ”conservation” equation because it states that the volume
of material (soil, in this case) is conserved, and there are no sources or sinks of material. More specifically,
it states that the rate at which the elevation of a given location decreases (dz/dt) is equal to the difference
in the rates at which sediment enters from upslope and leaves that location (dg/dz). Formally, we can say
that the rate of landscape lowering equals the divergence of the soil flux. Importantly, this is a universal
idea, and the expression is valid for many processes.

Combine these equations

If we take the derivative of equation 1 with respect to x we find that
d d*z
2=k, 3)
dx dx?

and we can then insert this result into the right-hand side of equation 2 to get

dz d?z

This equation is known as the diffusion equation. The left-hand-side is the rate of change in surface elevation
with time. Because the right-hand side is a second derivative of space (e.g. dz? in the denominator), we
know that the rate of change of surface elevation is proportional to hill-slope curvature. We are going to use
equation 4 to model how the height (z) of a hill-slope evolves (i.e. changes) with time. That means we are
going to solve equation 4 numerically for the value of topography z(x,t) at any time and space.

Part 1: The finite difference approximation (30 pts.)

The first step in solving equation 4 numerically is to write each derivative in terms of a finite difference
approximation. We will do this together.

Step 1: Taylor Series expansion

First we need the Taylor Series expansion of the function f(z + h,t).

Of (z,t) n h? & f(x,t) n h? &P f(x,t)
Ox 2 Oz 6 0z3
(Haberman, 2013; Snieder & van Wijk, 2015). Notice that this is a function of two variables f(z,t), but that

we are only computing the derivatives with respect to . We can write a similar Taylor Series expansion
with respect to time ¢ using the variable k. Write the expansion for f(z,t+ k) below (10 pts.).

flx+ht) = f(x,t)+h
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Step 2: The forward difference operator for first derivatives

Recall from Lecture 05 that we can rearrange the terms in these expansions so that the desired derivative is
by itself on the left-hand side of the equation.

8fémx,t) f(x—i—h,t})L—f(x,t) N ga%afia;,t) %28325;,0 - f($+h’t})1_ f(z,t) Lo,

What does the term O(h) represent in the equation above? (4 pts.)

Write the first order time derivative (W) using the forward difference operator. (6 pts.)

Step 3: The centered difference operator for second derivatives

Go back to the Lecture 05 notes (README.html) and look at the derivation of the second derivative with
2
respect to . Write the centered difference operator for % (5 pts.)

Step 4: Approximate the derivatives

The next step is to approximate the first order time and second order space derivatives. The approximation
for the second order space derivative is

82f(x,t) ~ f(x+h,t)*2f(l’,t)+f(1’7h,t)

0x? h?

Note the approximation symbol instead of the equal sign. This is because we have truncated the O(h?)
terms. Write the approximation for the first order time derivative % (5 pts.)
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Part 2: The finite difference solution to the diffusion equation (20
pts.)

Step 1: Approximate the partial differential equation

Now that we have an approximation for the first order time derivative w and the second order space

2 e
derivative 2 giﬁ’t), we can insert these into the diffusion equation. Rewrite equation 4 in terms of the finite

difference approximations. (Hint: Notice that we just did the derivation in the previous section using a
generic function f. When writing your answers in this part, make sure to replace f with z because in our
diffusion equation we are computing the elevation z(x,t).) (10 pts.)

Step 2: Solve for the value of the function at time ¢t + &

Now solve this equation for z(z,¢ + k). (Hint: Remember that k and x are different!) (5 pts.)

Reflection:

It is important to stop here and reflect on what we have just done. Ask yourself, what does the equation you
just derived actually represent? That is a good question. Basically you have now derived the finite difference
solution to the diffusion equation. This analysis is very general and can be applied to any diffusion equation
(e.g. temperature, fluid flow in porous media, etc.). You just need the (partial) differential equation; then
you approximate derivatives and insert into the (partial) differential equation.

In particular though, you have just solved for the value of the function at the next time step ¢+ k. Let’s look
at what we need in order to solve the function at the next time step. We need z(x,t), which is the value of
the topography at the current time step ¢ and at the observation location x. That makes sense right? You
can’t compute the elevation in the future if you do not know the elevation now. What else? Well, you need
to know the value of the topography to the left (2(x — h,t)) and to the right (z(z + h,t)) at time ¢. This
also makes sense. We are computing derivatives so we should expect that we need to know the local slope
of the topography around observation point x. Finally, we need to know x, h and k. We haven’t discussed
h and k yet, but we will in the next section.

Draw a diagram of the grid points needed to compute z(z,t + k). Let row 1 be related to time step ¢ and
row 2 be related to time step ¢ + k. Let column be & — h, column 2 be z, and column 3 be x 4+ h. This grid
diagram is often called the finite-difference stencil (5 pts.)
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Part 3: Implementing the numerical solution (35 pts.)

In this last part, we will implement the finite difference solution to the diffusion equation that you just
derived. This will allow us to model the evolution of topography given two things:

1. the initial topography profile,

2. the value of topographic diffusivity (k).

Start a new MATLAB script and begin to code based on the following steps. Make sure that you name
variables following the MATLAB style guide document MatlabStylelps.pdyf.

Preliminaries
A typical computer program usually follows the logical sequence or steps below:

1. Define parameters and constants,
2. Create the model space (includes time if necessary),
3. Compute calculations (using loops if necessary),

4. Plot results.

Let’s do this now.

Step 1: Define parameters and constants

In the first section of your MATLAB script define &, dt and dz. (dt is actually k and dz is h from the
previous section. It helps to think in terms of dt and dx though as these are the intervals between points in
time and space. For example, when we look at the points to the left and right of us, we will look at = — dx
and z + dx, respectively.) These are the important parameters that do not change during the numerical
modeling of the hill-slope evolution; set dt = 1 [year], dr = 1 [m] and k = 2e—3 [m?/year]. (5 pts.)

Step 2: Make the initial model

Before we can do anything on a computer involving computations, we need to decide on a model domain.
This is the time and/or space where our (partial) differential equation will be solved or studied. This means
we have to 1) choose a physical space and discretize that space, 2) choose a time frame and discretize that,
and 3) assign some physical properties to this space. For now, we will assume the physical properties are
constant everywhere (i.e. k is a constant.) Therefore, we need to make our initial model z(z,¢ = 0). This
means we need the initial topography model z(z) at time ¢t = 0.

For the initial model, let’s use the model given in the (Hallet & Putkonen, 1994) paper, which is a triangular
moraine. We can build a triangle function z(x) with the following piece of MATLAB code.
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z=[000001234567891098765432100000]; % [m] height
nNode = numel( z ); % [No] number of elements in the x-direction
xArray = ( 0 : nNode - 1 ) .x dx; % [m] make the x-position vector

The variable z is the elevation. The variable nNode is number of elements in the z-array, meaning we have
sampled the topography evenly nNode times. The variable xArray gives the relative x location of each
element in z.

Based on dr = 1, at which x location does the maximum elevation occur in our triangular topography
model? (4 pts.)

Plot the initial topography at time zero. Make sure to include a figure title, axes labels and a legend. Save
this as a .png file that has dimensions 600x600 pixels. (6 pts.)

Step 3: Loop through time to compute the topography at ¢ + dt

Now that we have an initial model and the physical properties of this initial model, we can compute the
topography at the next time step ¢ 4+ dt. This is the heart of the finite difference solution. Let’s think about
how we might do this. First we need to choose an end time. Make another parameter called tMax and set it
to 1000 [years]. We want to loop over time from time zero up to time tMaz. For generality, we should also
make a generic start time as well. Make a variable called 0 and set it equal to dt; this means that the first
observation year is 1, or that our initial model occurs at year 1.

Make a for loop that runs from t0+dt:dt:tMax. This loop starts at t0+dt and stops at tMaz, incrementing
by whatever we assign to dt. NOTE: in this current implementation dt must be the integer 1! We will
discuss making more general time steps later in lecture. This should remind you of z(x,t+ dt), where we are
computing the elevation at every dt step. (5 pts.)

Now what goes inside of this for loop? Well, it should be the right-hand-side of your equation for z(x,t+dt).
The only things left to consider are the (x — dx) and (x + dx) terms required to compute z(z,t + dt). It
turns out that we need another for loop inside our time loop. The limits of the second for loop should be
2:nNode-1. NOTE: we are not dealing with the edges of the model (i.e. xArray(1) or zArray(nNode)). We
will not discuss boundary conditions here; instead we will leave the edges of the model zero with each time
step. Inside this second for loop, insert your finite difference equation (10 pts.)

Step 4: Plot your results

Using the MALTAB hold command, plot your final model at 1000 years on top of your initial model. Make
sure everything in your plot is labeled (5 pts.)

Part 4: Discussion (15 pts.)

1. Vary the tMaz variable and recompute your model. Describe the differences you see when you set
tMaz equal to 1e2, 1e3, le4, 1eb, 1le6. Does this make sense with what you know about erosion and
sediment movement? Explain. (5 pts.)

2. Vary the & value and describe how this parameter changes the model output. (5 pts.)

3. Describe how this model would change if we had tilted rock layers and we were modeling the topography
evolution along a direction that crossed these different layers. How might we account for this? (5 pts.)
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