[bookmark: _GoBack]Numerical modeling of streams using the 1-D Stream-power model coded into Matlab
In this lab you will work with a Matlab script (detach_ftfs_lab_ss.m and variations) to explore geological (rock strength and rock uplift rate) and climatic controls on river channel profile evolution. We focus on profile evolution because interpretation of changes in slope (knickpoints) is the essential element in the interpretation of tectonic and climatic histories recorded in topography. This is useful for determining how rivers may have developed in the past and how they may change in the future.
Detach_ftfs.m is a code for modeling channel profile evolution under imposed sets of processes and boundary conditions (these are the geological and climatic conditions) for the simple detachment-limited stream power model. The goal is to teach you a little bit about numerical simulation, increase your familiarity with Matlab, and to develop your understanding of the dynamics of knickpoint formation, migration, and evolution in landscapes sculpted by rivers. Ultimately, it’s important to remember you are really learning about the stream power model, not about real landscapes. Understanding the predictions of the stream power model, we can then compare measurable features of both models and real landscapes to understand similarities and differences.
There are a series of exercises given below to guide you through an analysis of the controls on river profile evolution under a variety of conditions. For initial development of ideas, the particular variables to adjust will be guided, but further exploration is encouraged. You are asked to turn in: (a) figures from models that demonstrate your findings, including a complete list of model parameters used (use figure numbers and captions to enhance readability); (b) a brief explanation of (1) why the parameter values were chosen and changed (2) your interpretation of the results; and (c) brief answers to any direct questions asked below (that is, all sentences that end in a question mark).
To help you develop Matlab scripting skills, you will start with exploring what the model currently does, and then an optional challenge to add some functionality to the script (M-file) “detach_ftfs_lab_ss.m” is offered. Commented (“%” in green text) notes about where to make certain changes are supplied. Group work is encouraged for completing the scripting, but make sure to use this opportunity to learn. Save a copy of all of the supplied m-files, which have default parameters saved.

Activity 1: Explore variable changes
Code Used: detach_ftfs_lab_ss_simplified.m

assumes familiarity with Windows computers but not Matlab
1) Uplift rate increase, constant baselevel
The code (detach_ftfs_lab_ss_simplified.m) currently plots three useful visualizations of rivers and variables that are relevant at large scales. Two primary plots are the stream profiles (z vs x) and slope-area diagrams (s vs a) for a few representative timesteps through simulated erosion. The slope-area diagram is useful for visualization of Flint’s Law (S=ksA-θ). On a log-log scaled plot, the y-intercept of a straight line is the value ks, and the slope of the line is the exponent theta. For these codes, we define theta as 0.5, but the channel steepness (ks) can change.

The plots of dz/dt (elevation change with time) vs distance are useful to study the approach to a new steady state (dz/dt=0 at steady state).

	Using the original supplied detach_ftfs_lab_ss_simplified.m script, look at the script by opening the file in Matlab. Most lines are commented to describe what is happening in the code. Take some time to look through it. Identify the three main sections of the code: 1) Initialize parameters; 2) open a time “for loop” to calculate new longitudinal profiles; 3) plot final and steady-state long profiles.
	Use text-search (ctrl-f) to find “icflag” and “bcflag”. These variables are chosen by the user to distinguish the possible initial conditions and boundary conditions, respectively. In the initial comments, each possible scenario is explained (i.e. icflag=1 sets baselevel to a constant position (it does not move)).
	For the first model run as given, the only variable that changes through the model runs is the uplift rate, where Ui=0.0001 (initial). After the first time step, the uplift rate increases to U=0.001 (10x higher).
	Run the unmodified code. Find Figure 1 (a window will pop up). Comparing the “plot” commands in the code the figure, determine which colors represent the 1) initial profile; 2) each changing profile, 3) the final profile of the changing state and to the 4) Steady State (no longer changing) profile.
	Describe how the profile, slope-area and dz/dt plots change through time based on this visualization derived from a single change from a low uplift rate to a higher uplift rate. How does channel steepness change through from beginning to end?

2) Uplift rate decrease, constant baselevel

In the code, change the values of U to 0.0001 and Ui to 0.001 meters per year. This will create a new plot where uplift has decreased from high to low in one step. Describe how the profile, slope area and dz/dt plots change in Figure 1 changes through time. 	How does channel steepness change from beginning to end?
	
3) In the code, the erosivity of climate can be modified by changing the value of K. More erosive climate conditions, (i.e. more annual rain, simplistically) will change the shape of a river.

Set U and Ui to equal values, but instead change K and Ki to be different numbers (keep them in a similar order of magnitude to the given K). Try Ki = 0.00001 (less erosive initial) and K = 0.00005 (more erosive).

Describe the changes in the profile, slope-area plot and dz/dt plots. How does channel steepness change from beginning to end?

4) Create a case where K decreases. Describe the changes in the profile, slope-area plot and dz/dt plots. How does channel steepness change from beginning to end?

Activity 2: Describe changes in chi and channel steepness given the plots
Code: detach_ftfs_lab_ss_add_chi_ksn_plots.m

Using detach_ftfs_lab_ss_add_chi_ksn_plots.m, the code will automatically output channel steepness locally (rather than estimating from a y-intercept). Chi is calculated by numerical integration of Flint’s Law (A-θref), and channel steepness is calculated from chi.

Chi calculations:
In the code, search for “chi” and locate the for loops that calculate each value of chi from each drainage node (area(i)). Identify the variables that chi is calculated from. How is dfm defined?

In the for loop for chi, an iterative calculation is being completed by the code. Essentially, starting at dfm = 0, chi is zero. In moving upstream, dfm increases and drainage area decreases. For each step moving upstream, chi is increased by adding the previous chi calculation to the next one (this is what the for loop calculation does for us). There are potentially thousands of calculations done for a chi plot, and this code will take more time to run.

Ksn calculations
Find in the code where ksn, ksn_init, and ksn_init_ss, are calculated. Note that in steady state, chi is not used and ksn can be determined directly from theoretical relationships with uplift (U) and erodibility (K). How do the for loops deal with calculating chi and ksn

1) Using the given initial conditions, run the code. Describe how the long profile, slope-area, dz/dt plots, ksn and chi plots change with time.

2) Change uplift and K as you wish: keep track of how each change alters the output figures. Try predicting what you think will happen as you develop intuition about how the codes calculate profile shapes, chi, ksn etc.

Activity 3: Alter code for new calculations and outputs.
Code: detach_ftfs_lab_ss.m
Instead of using pre-made codes, a basic code is supplied with suggested changes in comments.

In order to calculate chi and ksn values for each node at each timestep, the ultimate steady-state must be computed. The integral to calculate chi is challenging, so initial condition calculation of chi is completed for you in this code. If it is necessary to re- compute chi at later steps, you will need to model any new lines of code off the supplied code. Placeholders are used for variables to use and where plotting routines are needed.
	An interesting aspect of river profiles is how the knickpoints migrate upstream. Wave celerity is an important concept here: like ripples in water moving side-ways across surface at some wave velocity (celerity), knickpoints also move upstream, eroding into the landscape moving as a kinematic wave with a certain velocity. Depending on how the stream behaves upstream and downstream of the knickpoint, the knickpoint might increase, decrease or remain at the same elevation.

In the model, “n” is an important aspect of how the knickpoints move, in addition as well as uplift (U). In completing the following tasks, it is possible to show that a theoretical result for vertical knickpoint velocity can be shown from the model outputs.

Your tasks:
1. Calculate local ksn values for each timestep to be plotted.
2. Determine if you need to re-compute chi at later timesteps and take care of this (copy/paste, edit is a good approach any time you need to replicate or mimic an existing section of code).
3. Calculate final steady state (with final values of U and K) ksn values and chi-z pairs.
4. Plot ksn vs distance (blue for initial, green intermediary, magenta end of run).
5. Plot z vs chi (blue for initial, green intermediary, magenta end of run).
6. Plot ksn vs elevation (blue for initial, green intermediary, magenta end of run).
7. Add final steady-state curves (black) to all new plots.
8. Either export data for the final (or all plotted) time-steps and compare observed KP locations and migration rates with theory, or work out how to plot predicted representative KP position(s) on various plots so you can directly compare model results to analytical expectation. The idealized solution for KP migration (vertical velocity) rate is:

[image:] (1)
Note that for n=1 this reduces to Vkp = Uf .

Question 1: How could that be true? How does the final rock uplift rate, and no other variables, set the vertical migration rate of a slope-break knickpoint?

Problem 2. Test the Analytical Result for Vertical knickpoint velocity for the n=1 case.

First, test the evolution of knickpoint form for n=1. In this case the wave celerity of steep, and less steep river reaches should be the same, so knickpoint form should never change – knickpoints should be sharp and discrete, a sudden change in channel steepness and should stay

2
9/1/2015

that way. Is this what you see? Explore the role of grid size by increasing the number of nodes (Xnodes, increase in steps from 200 to 10,000 – the n=1 version is FAST so you can do this. Not so much when n ≠ 1 – try it and find out. Use ctrl-C to stop Matlab if needed).

Question 2.Discuss – why is this happening?

Second try a range of Ui (the initial uplift rate), U (the final uplift rate), Ki, and K and compare knickpoint positions with Equation (1). In principle, no matter how much U changes (including not changing at all), whether K changes as well (a contemporaneous or coupled climate change) and even whether relief is increasing or decreasing, this relation should hold for the transition from one steady state condition to another.

Question 3. Could that really be true? Does it really work? Implications for studies of Tectonic Geomorphology (brief!).

Problem 4. How do cases with n=2/3 and n=2 differ from the well-known n=1 case.

Question 5. What happens if you change n to 2, reduce run time to only 10,000 years (you’ll be waiting a long time if you don’t do this) and leave all other parameters the same as originaldefaults (start with Xnodes = 200)? Just describe the result. What do you think is happening? What do you have to do to get the n=2 case to create a final topography similar to the n=1 case? (Recall I said that any model can be forced to achieve the same final steady state). Hint: Look at the analytical solution to ponder this – you don’t need models to understand steady state conditions.

Question 6. What happens if you change n to 2/3 and leave all other parameters the same as original defaults (including run time back to 100,000 years and Xnodes = 200)? Just describe the result. What do you think is happening? How does this “effect” vary in time? What do you have to do to get the n=2/3 case to create a final topography similar to the n=1 case? Hint: look at the parameter “stabil” and how it is used. Think about what you might try and play around.
Describe your findings.

4
9/1/2015

image1.png

