
Part of a lab handout posted on Blackboard: 
 
Exercise 2 (special thanks to Giorgio Proestos and Allan Kuan of CIV102F for 
helping put this exercise together) 
 
One of the main issues in the design of structures for dynamic loads, such as earthquakes 
or wind forces, is to establish a good estimate of the natural period or periods of 
vibration. In earthquake engineering, the first fundamental mode of vibration is used to 
estimate the acceleration demand, and in turn, the force demand on a structure. The 
structure acts like a filter and filters the ground motion signal until it reaches the masses. 
The dynamic response of the system depends on its physical characteristics, e.g. its mass 
and stiffness. Elongating the period (reducing the natural period of the structure) is a 
good way to avoid damage from earthquakes, since the frequency content of earthquake 
is quite high, and this is accomplished by modifying the design of the structure.  
 
Typically the number of storeys a building has will dictate an approximate number of 
modes of vibration the structure will be excited in. The higher modes require far too 
much energy to excite them and usually only the first 2 to 5 modes (or perhaps 10 if the 
structure is very tall) are important.  
 
For a two storey structure the problem condenses to two degrees of freedom described by 
a set of coupled, second order differential equations. The derivation of this model comes 
directly from free body diagrams of the masses. A two-storey building can be modelled 
as seen in the figure below, with the mass concentrated on each floor, and the stiffness 
concentrated on end columns. 

 
Figure 1 - Model of a two-storey building 
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By lumping the stiffness on each floor, the model can be further simplified into a system 
of two masses coupled by springs, or what is commonly referred to as the “Lollipop 
Model”. 
 
 
  

   
 
Four forces are considered when taking a free body diagram of each mass: 
 

 An inertial force from the acceleration of the mass 
 Damping forces from the viscous damping associated with velocity 
 Spring forces as described by Hooke’s law 
 A time-varying externally applied force 

In this exercise, you are asked to simulate the building’s behaviour even when an 
externally applied force is assumed not to be present, i.e. under what is called free 
vibration. We will also choose to ignore the viscous damping forces. Under these 
assumptions, the mathematical model of the building to be simulated consists of the 
following two, coupled, second order differential equations: 
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Using initial velocities of zero and mm 100)0(1 x and mm 50)0(2 x , numerically solve 
this IVP using the improved Euler method for the horizontal displacements of the first 
and second storeys, i.e. )( and )( 21 txtx . 
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Develop a figure showing the resulting numerical solutions for sec]10,0[t , using 
different line types for different time steps N. Use the subplot command to plot 

)(1 tx versus t on the top plot and )(2 tx  versus t on the bottom plot. Label the axes and 
add a legend showing the time step N associated with each line type. By studying the 
approximate solutions using different numbers of time steps, how many time steps are 
needed in order to obtain a reasonably accurate solution? 
 
The final part of the exercise is to perform some analysis on the simulation results and 
relate these results to our earlier work on matrices and their eigenvalues. 
 
By examining your simulation results, observe the resonant frequencies. Try to estimate 
these resonant frequencies from the data by estimating their periods and converting this 
to an angular frequency (radians/sec). 
 
Next, open the Graphical User Interface (GUI) for the System Identification Toolbox in 
Matlab by typing ‘ident’. Select the drop down menu for importing data and select Time 
Domain Data. Under the Workspace Variables, enter the name of the vector containing 

)(1 tx as the Output, set the Starting Time to zero, and set the Sample Time to the time 

step t that goes with )(1 tx . Click “Yes” when the next window appears asking if a time 
series should be created from the output variable. When you do this, the data will appear 
is the Data Views. If you check the Time plot, you will see a time domain plot of the 
data. When you check the Data spectra, you will see a periodogram of the data which is 
the absolute square of the Fourier transform of the data. This is a frequency domain plot 
that clearly shows the resonant frequencies contained in )(1 tx . Determine the frequencies 
at which the system is resonating. It will help if you add a grid to the plot from the Style 
menu and recognize that the periodogram is a log-log plot. Repeat by examining the 
resonant frequencies associated with )(2 tx . 
 
Now for the pièce de résistance (French for the most important or remarkable feature). 
Determine the eigenvalues of the system matrix using the built in function in Matlab 
called ‘eig’. You will see that the eigenvalues come in complex conjugate pairs and 
correspond to the resonant frequencies or natural frequencies of the system. Voilà. Lots 
more to come when you take MAT292F – Calculus III in second year. 



Follow-up announcements posted on Blackboard: 

Exercise 2 Lab 2 results 

I have posted on Bb two plots showing the results from Exercise 2 Lab 2. One plot shows 
the time domain results for x1 and x2 (the horizontal displacements of m1 and m2, 
respectively) and the other plot shows these results in the frequency domain via the 
periodogram. 

A physical model of a 3 degree of freedom structure representing a 3 storey building 
being forced sinusoidally at its base may be found at 

 https://www.youtube.com/watch?v=OaXSmPgl1os .  

This video was produced by Professor Kwon in Civil Engineering. 

In the video you will see that the period of the sine wave is gradually decreased to excite 
the structure in its first mode and then in its second mode. There should be a third mode 
in this case because there are three masses, but the third mode was probably too difficult 
to excite on that table. 

More on Exercise 2 Lab 2 

I want to refer you back to the simulation results I posted on Bb for the Lollipop model of 
the two storey structure and the YouTube video showing a physical model for a three 
storey structure. The state matrix for the Lollipop model, taking Y=[x1;x2;x1';x2'], is 
given by: 

A=[0 0 1 0;0 0 0 1;-101.6358 50.8179 0 0;60.9150 -60.9150 0 0] 

and using the 'eig' function in Matlab, the eigenvalues of A are +/-4.69i and +/-11.85i 
where i=sqrt(-1). 

The eigenvalues of A determine the dynamic behaviour of this system. The fact that the 
eigenvalues have complex parts associated with i=sqrt(-1) means that the system 
responds in an oscillatory manner. The fact that the eigenvalues have no real parts means 
that the oscillations induced by the nonzero initial conditions do not increase in 
magnitude but also do not decrease in magnitude. Finally, if you look at the periodogram 
of the time domain responses x1 and x2, the oscillations contain two resonant frequencies 
and these frequencies are predicted by the complex eigenvalues (expressed in 
radians/sec). 



 

Two figures posted on Blackboard referred to in the first announcement 
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