Problem 1. You collect samples from several of the islands and seamounts on the Hawaiian-Emperor chain, and determine their age. Plot the distance from Kilauea for each sample against the age of the sample.

Volcano Name Age (Myr) Distance (km)

Kilauea	0	0
East Maui	0.75	182
Kauai	5.10	519
Necker	10.30	1058
Laysan	19.90	1818

Problem 2. You want to create a topographic profile of elevations across the Fox River Valley in Appleton. A profile is essentially a graph of elevation versus distance. Graph the following information. In this example the distance is the distance from the intersection of S. Mason and S. Spencer and the elevation is feet above sea-level.

Distance (mi) Elevation (ft)

0	800
0.1	795
0.2	790
0.3	795
0.4	790
0.5	765
0.6	735
0.7	735
0.8	785
0.9	790

Problem 3. Records from Mercer Creek near Seattle show a 12-year flood (a flood with a recurrence interval of 12 years) has a discharge of 812 ft³/sec, a 6-year flood has a discharge of 670 ft³/sec, a 3-year flood has a discharge of 612 ft³/sec, and a 2 year flood has a discharge of 504 ft³/sec. Plot this data with recurrence interval on the x-axis and discharge on the y-axis.

		\Box
		H
		Н
		H
		Н
		H
		H
		\Box
		\parallel
		\parallel
		\parallel
		+