




Earth’s nanomaterials



Digital / Information Revolution

Molecular Biology Revolution

Nanotechnology Revolution

Cognition Revolution, “Decades” of the Brain

Major Technological Revolutions in Human History (cont.)
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The President’s 2019 Budget 
supports nanoscale science, 
engineering, and technology R&D 
at 12 agencies (approx. $1.5B). 
The five Federal organizations 
with the largest investments 
(representing 95% of the total) 
are: 

HHS/NIH (nanotechnology-based 
biomedical research at the 
intersection of life and physical 
sciences). 
NSF (fundamental research and 
education across all disciplines of 
science and engineering). 
DOE (fundamental and applied 
research providing a basis for 
new and improved energy 
technologies). 
DOD (science and engineering 
research advancing defense and 
dual-use capabilities). 





Melting temperature 
= 1,064°C

Melting temperature
= 427°C

Gold



Color = gold

Color = pink, orange,
red, purple, violet

Gold



Gold

Inert gold in 
1,000 year old 
shipwreck.

Catalytic 
gold in gas 
reaction 
research
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1 nm = 10-9 m

Piece of 
paper

= 100,000 nm thick

Human hair = 80,000 nm thick

DNA = 2.5 nm diameter

Gold atom = 0.3 nm diameter

How small is “nano”?

108 meters 108 meters



Hochella et al. (2008) Science, v. 319, p. 1631-1635. 

Phytoplankton:  half of all 
photosynthesis on Earth!

So what’s the big deal for the Earth sciences!?      OK, an example . . . 









Hochella et al. (2008) Science, v. 319, p. 1631-1635. 



Nano-hematite, HAADF-STEM tomography, aggregate, 30 nm

The geometry of the transform is illustrated in
Fig. 1. A discrete sampling of the Radon trans-
form is geometrically equivalent to the sampling of
an experimental object by some form of trans-
mitted signal or projection. The consequence of
such equivalency is that the reconstruction of the
structure of an object f ðx; yÞ from projections Rf
can be achieved by implementation of the inverse
Radon transform. All conventional reconstruction
algorithms are approximations, with varying
accuracy, of this inverse transform.

The Radon transform operation converts the
data into ‘Radon space’ (l;y), where l is the line
perpendicular to the projection direction and y is
the angle of the projection. A point in real space
(x ¼ r cos f; y ¼ r sin f) is a line in Radon space
(l;y) linked by the equation l ¼ r cosðy$ fÞ: A
single projection of the object, a discrete sampling
of the Radon transform, is a line at constant y in
Radon space. A series of projections at different
angles provides an increased sampling of Radon
space. Given a sufficient number of projections, an
inverse Radon transform of this space should
reconstruct the object. It becomes evident that any
experimental sampling of (l;y) will be discrete and
as such any inversion will also be imperfect. The
problem of reconstruction then becomes achieving
the ‘best’ reconstruction of the object given the
limited experimental data.

4. The central slice theorem and Fourier space
reconstruction

In practice reconstruction from projections is
aided by an understanding of the relationship
between a projection in real space and Fourier
space. The ‘central slice theorem’ or the ‘projec-
tion-slice theorem’ states that a projection at a
given angle is a central section through the Fourier
transform of that object. This is of course exactly
the theorem used for the ‘projection approxima-
tion’ relating the intensity of zero order Laue zone
(ZOLZ) reflections to the crystal potential pro-
jected in a direction parallel to the zone axis. A full
exploration of the relationship between the Radon
and the Fourier transforms is covered in Ref. [8].

Thus, if a series of projections are acquired at
different tilt angles, each projection will equate to
part of an object’s Fourier transform, sampling the
object over the full range of frequencies in a
central section. The shape of most objects will be
described only partially by the frequencies in one
section but by taking multiple projections at
different angles many sections will be sampled in
Fourier space. This will describe the Fourier
transform of an object in many directions, allow-
ing a fuller description of an object in real space.
In principle a sufficiently large number of projec-
tions taken over all angles will enable a complete
description of the object.

Therefore tomographic reconstruction is possi-
ble from an inverse Fourier transform of the
superposition of a set of Fourier transformed
projections: an approach known as direct Fourier
reconstruction [5] which was used for the first
tomographic reconstruction from electron micro-
graphs [9]. This theory also allows a logical
description of the effects of sampling deficiencies
in the original dataset. If projections are missing
from an angular range, brought about by a limit
on the maximum tilt angle, then Fourier space is
under-sampled in those directions and as a
consequence the back transform of the object will
be degraded in the direction of this missing
information.

Unfortunately a practical implementation of the
Fourier space reconstruction approach is not as
simple as an inverse transform. The projection
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Fig. 1. The Radon transform R can be visualised as the
integration through a body D in real space f ðx; yÞ along all
possible line integrals L; with its normal at an angle y to the
horizontal.

P.A. Midgley, M. Weyland / Ultramicroscopy 96 (2003) 413–431416

important to the study of specimens found in
materials research.

The need to obtain higher dimensionality
‘structures’ using lower dimensionality data is
present in many different fields of physical and
life sciences. The first real application of this
however, was in the field of astronomy when
Bracewell [6] proposed a method of reconstructing
a 2D map of solar microwave emission from a
series of 1D ‘fan beam’ profiles measured by a
radio telescope. This work covered the mathema-
tical formulation of projection and reconstruction,
introducing a number of important relationships
that will be discussed later. Surprisingly, despite its
obvious potential, this work had little impact
beyond its immediate field. However, in 1963,
interest in tomographic reconstruction was stimu-
lated again by its possible application in medicine
[7]. This paper lead directly to the development of
the X-ray computerised tomography (CT) scanner
[8], routinely known as the CAT-scan (computer
assisted tomography or computerised axial tomo-
graphy). This phenomenally successful technique,
which led to a joint Nobel Prize for Cormack and
Hounsfield in 1979, is undoubtedly the most well-
known application of 3D tomographic reconstruc-
tion. The success of the CAT-scan was mirrored in
the development of other medical analysis techni-
ques such as positron emission computed
tomography (ECT), ultrasound CT and zeugma-
tography (reconstruction from NMR imaging).
This success led to tomography being applied in
many other disciplines to allow, for example, 3D
stress analysis, geophysical mapping and non-
destructive testing. An exhaustive review of the
different applications for tomographic techniques
can be found in a review by Deans [9].

Interest in tomographic reconstruction from
electron micrographs started with the publication
of three seminal papers in 1968. The first was by de
Rosier and Klug [10] in which the structure of a
biological macromolecule was determined whose
helical symmetry allowed full reconstruction from
a single projection (micrograph). The Fourier
reconstruction methods used in this paper were a
natural progression from those developed for the
analysis of atomic structure by X-ray crystal-
lography [11]. While symmetry was key to these

results, it was suggested in the second of these
papers, by Hoppe [12], that, given sufficient
numbers of projections, reconstruction should be
possible for fully asymmetrical systems. The last of
the three early papers, by Hart [13], demonstrated
a method of improving contrast in BF images
using an ‘average’ image, known as a polytropic
montage, calculated from a tilt series of micro-
graphs. Although primarily used as a means to
combat the weak contrast in biological specimens,
Hart acknowledged the 3D information generated
by such an approach without extending this to the
possibility of full 3D reconstruction. These early
papers were followed by a number of theoretical
papers discussing the theoretical limits of Fourier
techniques [14], approaches to real space recon-
struction [15] and, at the time, somewhat con-
troversial iterative reconstruction routines [16,17].

While theory advanced rapidly, experimental
results were slow to appear because of a number of
important limiting factors such as beam damage,
the poor performance of goniometers and the lack
of processing power required for image processing
and reconstruction. The last two factors are no
longer problems but beam damage is still a
limiting factor in biological tomography even if
the samples are cooled to liquid helium tempera-
tures and examined at high voltages. Nevertheless,
electron tomography in the biological sciences has
developed to the point where the reconstruction of
unique objects is possible with a resolution of 2 nm
in a volume of (150 nm)3 [18].

3. The Radon transform

Although the first practical formulation of
tomography was achieved by Bracewell in 1956,
in fact it was Radon who first outlined the
mathematical principles behind the technique in
1917 [19]. The paper defines the Radon transform,
R; as the mapping of a function f ðx; yÞ; describing
a real space object D; by the projection, or line
integral, through f along all possible lines L with
unit length ds:

Rf ¼
Z

L

f ðx; yÞ ds: ð1Þ
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Purely quantum mechanical considerations





Strong quantum 
confinement regime:  

a < ae,ah

Intermediate quantum 
confinement regime:  

Weak quantum 
confinement regime:  

ae < a < ah

ae,ah < a

For hematite:  7.0 nm        3.8 nm   



aB =
εm0

µ
a0

written in terms of    :aB a0

aB =
(32)(9.11×10−31)
(1.43×10−31)

(5.28×10−11) =10.8×10−9m =10.8nm

For PbS galena: aB =18nm

Quantum Confinement in Hematite


