GUIDING PRINCIPLE 1: Curricular materials must address one or more Earth-related grand challenges facing society:

- Resource challenges include (but aren’t limited to) ensuring availability of sufficient mineral and energy resources, freshwater, and sustainable development;
- Environmental challenges include (but aren’t limited to) climate change and variability, natural hazards, waste disposal, environmental degradation, pollution, ecosystem services.

Science and Engineering Practices

Asking Questions and Defining Problems

HS-PS1.9 Analyze complex real-world problems by specifying criteria and constraints for successful solutions.

Constructing Explanations and Designing Solutions

HS-P6.5 Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Cross-cutting Concepts

Cause and Effect

HS-CCC2.3 Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system.

Disciplinary Core Ideas

HS-ESS3.A1 Resource availability has guided the development of human society.

HS-ESS3.A2 All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors.

HS-ESS3.B1 Natural hazards and other geologic events have shaped the course of human history; they have significantly altered the sizes of human populations and have driven human migrations.

HS-ESS3.C1 The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources.

HS-ESS3.C2 Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation.

GUIDING PRINCIPLE 2: Curricular materials must develop student ability to address interdisciplinary problems;

- Build student capacity to work on interdisciplinary teams
- Integrate robust geoscience with knowledge from other disciplines such as engineering, the social sciences, and the humanities

Science and Engineering Practices

Planning and Carrying out investigations

HS-SEP3.1-2 Plan ... individually and collaboratively...

Engaging in Argument from Evidence

HS-SEP7.3 Respectfully provide and/or receive critiques on scientific arguments by probing reasoning and evidence, challenging ideas and conclusions, responding thoughtfully to diverse perspectives, and determining additional information required to resolve contradictions.

HS-SEP7.6 Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and/or logical arguments regarding relevant factors (e.g. economic, societal, environmental, ethical considerations).

Cross-cutting Concepts

Cause and Effect

HS-ESS3.D1 Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.
GUIDING PRINCIPLE 3: Curricular materials must improve student understanding of the nature and methods of geoscience and promote the development of geoscientific habits of mind;

- Compare modern processes to those found in the geologic record, or compare cases to understand commonalities and differences attributable to process, history, and context
- Develop converging lines of evidence
- Test through prediction
- Emphasize the fundamental role of observation and of a spatial and temporal organizational schema in understanding the Earth
- Recognize Earth as a long-lived, dynamic, complex system whose history is shaped by a continuum of long-lived low impact processes and short-duration high impact processes

Science and Engineering Practices	Cross-cutting Concepts	Disciplinary Core Ideas
Asking questions and defining problems
HS-SEP1.1 Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.
Developing and using models
HS-SEP2.4 Develop and/or use multiple types of models to provide mechanistic accounts and/or predict phenomena, and move flexibly between model types based on merits and limitations.
Planning and carrying out investigations
HS-SEP3.5 Make directional hypotheses that specify what happens to a dependent variable when an independent variable is manipulated.
Constructing explanations and designing solutions
HS-SEP6.2 Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.
HS-SEP6.4 Apply scientific reasoning, theory, and/or models to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion.

GUIDING PRINCIPLE 4: Curricular materials must make use of authentic and credible geoscience data to learn central concepts in the context of geoscience methods of inquiry;

- Make use of the most current and appropriate data available for the topics under discussion.

Science and Engineering Practices	Cross-cutting Concepts	Disciplinary Core Ideas
Analyzing and interpreting data
HS-SEP4.1 Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.
Using Mathematical and Computational Thing
HS-SEP5.3 Use mathematical, computational, and/or algorithmic representations of phenomena or design solutions to describe and/or support claims and/or explanations.

GUIDING PRINCIPLE 5: Curricular materials must incorporate systems thinking.

- Promote the understanding of the basic interactions among the spheres (atmo-, hydro-, geo-, cryo-, anthro-, bio-) and that a perturbation in one sphere may have effects throughout Earth’s system
- Promote the idea that multiple causal factors that could influence a single observation or outcome
- Address the differences between open and closed systems and between positive (reinforcing) and negative (countervailing) feedback loops
- Make use of the concepts of flux, reservoir, residence time, lag (delay), and limit (threshold), in explaining the behavior of natural systems, human systems, and linked human/environment systems

Science and Engineering Practices

Developing and Using Models

**HS-SEP2.3** Develop, revise, and/or use a model based on evidence to illustrate and/or predict the relationships between systems or between components of a system.

Constructing explanations and designing solutions

**HS-SEP6.1** Make a quantitative and/or qualitative claim regarding the relationship between dependent and independent variables.

Cross-cutting Concepts

Cause and Effect

**HS-CCC2.4** Changes in systems may have various causes that may not have equal effects.

Systems and System Models

**HS-CCC4.1** When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.

Energy and Matter

**HS-CCC5.4** Energy drives the cycling of matter within and between systems.

Stability and Change

**HS-CCC7.3** Feedback (negative or positive) can stabilize or destabilize a system.

Disciplinary Core Ideas

HS-ESS3.D1 Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.

HS-ESS2.A1 Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes.