INTRO TO MODELING EARTH SYSTEMS 


Learning Goals
On completing this module, students are expected to be able to:
· Explain why numerical modeling is a useful tool for studying Earth.
· Describe the components of systems, such as reservoirs and flows.
· Construct simple models of a bathtub, bank accounts, and cooling coffee using the STELLA software.
· Experiment with simple models to learn about different system behaviors.
· Explain the importance of the model time step and when to use different integration methods.
· Discuss the limitations of models.


This week’s exercise will provide a hands-on introduction to many of the concepts, tools, and techniques that we will use throughout the course. Unlike most other weeks, we will not focus on one system in particular, but rather will use a few common, simple examples to familiarize you with STELLA and the basics of modeling. The goal for this week is to give you the skills you need to be sucessful in the rest of the course, so do not be afraid to ask a lot of questions, and repeat sections until you understand them! 

All questions are in red. Please write their answers in here as you go along and use a font that makes it easy to find your answers.  

Exercises
1) Let us get to know the program we will be using this semester. STELLA is a visually based modeling software package that allows us to model a surprisingly wide array of systems without the need to learn a coding language or master calculus and differential equations. Launch STELLA Professional on your computer, and follow this link: http://www.iseesystems.com/community/downloads/tutorials/ModelBuilding.aspx. 
At the time of writing this, the software is in transtion, and they have not yet made new tutorials. If this is still the case when you try to use these materials, follow this link to the older tutorials, which will suffice:
http://legacy.iseesystems.com/community/downloads/tutorials/ModelBuilding.aspx

Complete Tutorials 1, 2, and 3. “Play along" with each step on your copy of the software. 


Now that you know how the software works, let us make our first model. We will start with a system familiar to all of us, a typical sink with a faucet and a drain. Use the modeling steps from your reading to create a STELLA model of this system. 


First, take out a sheet of notebook paper and draw what this system looks like. Then launch the STELLA software and create the simplest possible model (just reservoirs and flows). Record your answers to the following steps here, and include a screenshot image of your STELLA model:




a. What is the reservoir in this system?


 b.  How might we determine its size? 


c.  What are the flows in the system, and what is their orientation relative to the reservoirs - i.e., do they feed the reservoir or drain material from it?


d.  How might we determine the sizes of these flows?


2) Now let us run some experiments. Click on the Model View button (2) on the bottom, left-hand side of the Properties panel window so that you can specify the values of the reservoir and flows:

[image: ]

Note that when you do this, yellow caution triangles with exclamation points in them appear: 
[image: ]
This is because we have not yet specified any values for the reservoir or flows.

If we want to start the model run with an empty sink, what do we need to do?


Once you have entered your starting value, which is known as the initial condition of the sink, click on the Units drop down arrow and select gallons from the Distance/Area/Volume selection:

[image: ]

Carry out the same procedure to make the inflow faucet have a value of 1 gallon per minute (a very typical flow value for a bathroom or kitchen faucet) and the outflow drain have a value of 0 gallons per minute (this would be equivalent to putting a stopper in the drain pipe). In order to set the timescale of the model, you will need to go to Model > Run Specs and change the unit of time to Minutes by changing the text in the Time Units box. Leave the default values for the length of the run (Start Time and Stop Time) and the DT as they are, and then click the green check mark in the bottom right of the Properties panel window.

Before you run your model, make a sketch on a sheet of notebook paper that shows what you think the volume of water in the sink will look like over time given the values you have just entered for the inflow, outflow, and initial condition of the sink.    


3) Set up a graph on your model page to keep track of the values of the reservoir and the two flows throughout your simulation. In the Graph Settings window, click on the checkbox to show numbers on series.  This will help you to be able to better analyze your results by making clear which variable is which. Run your model (by going to Model > Run or by clicking on the run arrow in the lower left of the software window [image: ]), paste a copy of your graph in here, and verbally describe what it shows.  

 

Does the model behave like you expected it to? Why or why not?  


The reading described several types of possible system behaviors. Which, if any, describes your results here?


4) Now, let us open the drain so that some of the water can escape. Make your drain flow have a value of 0.5 gallons/minute. On the notebook paper sketch of the graph you made before, predict what the volume of the water in the sink will look like over time given this new scenario. Annotate your graph so that it is clear which line belongs to which drain scenario. Then, run your model and paste a copy of your results graph in here. Verbally describe what has changed. Was your intuition correct? 



Given what you have found, what do you think would happen in the real world if the faucet were allowed to continue to run indefinitely at 1 gallon per minute while the drain removed 0.5 gallons per minute? (Hint: think about the size of the sink). 


5) Take a field trip to a sink in your building — perhaps in a bathroom or a laboratory — and experiment with it by changing the inflow and outflow rates and observing what happens to the volume of water over time. When you return to the classroom, watch this YouTube video (http://www.youtube.com/watch?v=CcHohK458XM) and answer the following questions:
   
Assuming that your plumbing is in good working order in your building, why does the sink you experimented with not overflow even when you turn on the faucet at full blast?


Does the STELLA model we have created to this point behave like a real sink? Why or why not? 


6) How could we make the model more realistic?  Hint: take a look at the groundwater model in the InTeGrate reading (Fig. 13), look closely at the discharge outflow, and think about the YouTube video you just watched.


Modify your STELLA model to make it more realistic. Paste a copy of the model and a graph of the outputs (sink volume, inflow faucet, and outflow drain) in here and explain what you have done and what the results are. Be specific, and discuss not just what the reservoir is doing over time but also what the flows are doing over time.


7) Let us consider one additional aspect of a sink that we have not yet incorporated into our model. Most shallow sinks, such as exist in bathrooms, have a secondary drain opening high up on the wall that is designed to prevent the sink from overflowing in the event the primary drain contains a stopper. This secondary drain exists because the sink has a finite capacity to hold water. If both drains were to be clogged, we could keep running water into the sink, but it would overflow all over the countertop and probably onto the floor. No matter how much we would try, we could not get the sink to accept any more water than it is designed to hold. The sink's limitation is known as a boundary condition and must be incorporated into our model if it is to be a complete representation of a sink. Note that as long as the secondary drain remains open, it too is a boundary condition of the system because water cannot build up beyond the level of that drain.

On your sheet of notebook paper, draw a sketch of the sink that incorporates the secondary drain and then modify your STELLA model accordingly. Paste a copy of your model graphic in here and explain verbally what you have done to modify the model:  



8) Let us think about what conditions are necessary to trigger the use of the secondary drain. If the volume of water in the sink exceeds some threshold volume, then the extra water will spill down the secondary drain. We have just defined an "if-then statement," a concept that we will use repeatedly throughout the course.  

Click on the secondary drain flow and enter the following text:  
if (Volume_of_water_in_sink>0.5) then (Volume_of_water_in_sink-0.5) else (0)

What this statement says is that if the volume of water in the sink grows to a level beyond 0.5 gallons [if (Volume_of_water_in_sink>0.5)], then the difference between that volume and 0.5 gallons will be spilled to the secondary drain (then [Volume_of_water_in_sink - 0.5]).  On the other hand, if the volume does not grow that high, there will be no flow down the secondary drain (else [0]).

Click the green check mark in the lower right of the Properties panel window before moving on.

Double click on the y-axis of your graph to include the secondary drain as a variable to be graphed, run the model again, and paste your graph in here. Verbally describe what it shows and explain how it differs from your previous model run.






9) Now it is your turn to play with the model. Starting with an empty sink, run an experiment where the inflow changes over time (Note: you may want to refer to the STELLA tutorials again on how to create a graphical function). This could be a gradual increase or decrease, or a sudden spike. Describe how you changed your model, and then run it and describe the results. Use a graph of some component(s) of your model over time to illustrate your description (include this graph here). Does the model behave like a real sink might behave? Why or why not? 


10) Now we will switch gears and explore some (important) details of modeling: the time step and the integration method. As you learned in the reading for this exercise, it is possible to come up with an analytical solution (also known as an exact solution) to an equation describing the change in volume of a reservoir over time.  You could put any time you like into the equation and it will return the exact value of the volume at that time. Recall, however, that in order to determine the analytical solution, we had to use calculus to integrate a first-order homogeneous differential equation.

When we use a computer to keep track of reservoir contents as a function of time, the process of coming up with the answer works somewhat differently. The computer does not perform calculus to arrive at an analytical solution. Rather, it approximates the answer at a number of discrete points in time. It does this by using a time step, called DT, to break up the model run into intervals of equal duration. For example, a model with which we wish to simulate the average air temperature over the course of a year might logically have a time step of 1 day. The model would then perform 365 sets of calculations to simulate the entire year. DT can have any units — days, minutes, seconds, hours, millions of years, etc. However, not all choices of units make sense.  One would not use a DT of 1 million years to simulate the annual cycle of air temperature because zero calculations would take place by the time the model was done running! Likewise, it would be a waste of time to use a time step of 1 nanosecond because this would require the computer to perform 3.15*1016 calculations to simulate one year, which would likely require months or even years of supercomputer time to carry out. Doing this many calculations would be classified as overkill!      

How then do we decide what value of DT to use? The answer is that we want to choose a time step that best simulates the observed behavior of the system we are seeking to model, but that also minimizes the computational time required. There are a number of ways of going about this, but first we want to convince you that the choice of time step really is important. Let us use the following example, taken from the STELLA online help documentation (see Running Models > DT > DT examples in the help): 

A bank account receives a $100 input of cash each month. The account has no interest. Simple math tells us that at the end of 3 months, the account will contain $300. Let us model this in STELLA, first using a time step of 1 month. 

Create a model that looks like this:

[image: ]

Make the initial condition for the cash reservoir have a value of $0 and make the inflow $100/month.

Set the Model > Run Specs parameters to run the model for 3 months and use a DT of 1 month.  Create a graph of cash as a function of time and paste it into here:



Now create a table to keep track of the income and cash over time and show the values here:
	Months
	Income
	Cash

	
	
	

	
	
	

	
	
	

	
	
	



Now let us change the time step to be 1 week (0.25 month). In Model > Run Specs, change the DT to 0.25 or to 1/4. Run the model again and create a graph of cash as a function of time and paste it into here:




Now take a look at the values in your table. First, click on the table header (where it says Table) and then make sure that the Every DT check box is checked on in the Interval menu of the Settings panel on the right-hand side of the software window (make sure the wrench tab is active [image: ]).  When checked on, you should see the time column in the table incrementing by a quarter of a month in every time step.  Now look at the income column. Does it read 100.0 for each timestep? If so, go find the Reporting Options in the Settings panel. Note that the Show instantaneous flow values button is depressed. What happens to the data in the table if you instead depress the Show flows accumulated over interval button?  


Which way of viewing the weekly income data do you think is more useful to understanding how the cash accumulates in the account over time?


Fill in the table below with the values based on the flows accumulated over the interval.

	Months
	Income
	Cash

	0
	
	 

	0.25
	
	 

	0.5
	
	 

	0.75
	
	 

	1
	
	 

	1.25
	
	 

	1.5
	
	 

	1.75
	
	 

	2
	
	 

	2.25
	
	 

	2.5
	
	 

	2.75
	 
	 

	3
	
	 




Note that at the end of each 3-month simulation (the one with DT = 1 month and the other with DT = 0.25 month, or 1 week), we find we have $300 in the account, but if we look at the details of the simulations, we find that in the 1-week simulation, $25 is being added to the account every week. So, the time step we choose determines how the cash accumulates — does it accrue a little at a time, or does it come in in large lump sums? Why is this important? Well, if the amount of money flowing into the account every week remains the same, it is not too important. 

However, let us now suppose that the amount of money flowing into the account changes on a weekly basis. The first week, the rate of addition is $100/month, the second week it is $90/month, the third week it is $80/month, and the fourth week it is $70/month. Take your STELLA model from above and open up the income flow.  Replace the value $100 with the word "time":

[image: ]

Then click the square with the wavy line in it next to the x2 tab (it is supposed to look like a graph). A graph window opens.  

Click the check box next to “Graphical” at the top of the panel. Make the left side of the x-axis 0, the right end 3, and then specify 13 values for the number of data points:


 [image: ]

Now we will fill in the data (click on the button that says “points” just below the graph). Starting at time 0, put in 100, then 90 at 0.25, then 80 at 0.5, then 70 at 0.75, and then repeat this sequence for the rest of the time series. When you are done, the page should look like this:

[image: ]


Run the model with a DT of 0.25. What is the final amount of cash in the account at the end of the 3-month run?  



Now run it with a DT of 1. How do your results compare? Explain the difference.  In order to do this, take a look at your table for both runs so that you can see the difference between them in how the cash accumulates. 






This example illustrates very nicely how the choice of DT can cause big errors if you are not careful.

A good rule of thumb to use when trying to decide on a DT is called the "1/2 DT" rule of thumb. After you do your first run, divide DT by two and run the model again. If the results are significantly different, halve DT again. Keep doing this until subsequent runs of the model give you little change in results. Then, choose the longest DT that gives you the desired behavior. Try it on your bank account here —make the DT = 0.125 (1/8) and describe how your results compare to the 0.25 DT simulation.





STELLA allows DTs up to 1 million units in length. While these long time steps are meant to facilitate very long model runs, you should be careful in using them — they may lead to large errors.

11) Sometimes cutting the time step in half or making it even smaller than this can get rid of pathological behavior in models. What do we mean by pathological behavior? Let us use another example from the STELLA documentation (see Running Models > DT > Troubleshooting DT issues, Artifactual Dynamics).  

Redraw your STELLA model so that it has a spending pipe coming out of the cash reservoir. Use a connector to connect the reservoir to the spending pipe; this tells STELLA that the flow out (spending) depends on what is in the reservoir: 

[image: ]

Now click on the spending outflow to open the Properties panel. In the equation box, type in the name of your reservoir, or simply select it from the list of Required Inputs above (that is the only thing on the list — STELLA knows the reservoir is a required input because it is connected to the outflow): 

[image: ]

Now make the outflow into a graphical function following the same steps as you carried out in question 10. Make the left side of the x-axis 0, the right side 50, and tell the model you want 11 data points. Put the following numbers in the table:

0 spending for 0 cash
59.5 spending for 5 cash
79.5 spending for 10 cash
93 spending for 15 cash
100 spending for all the remaining values of cash

Your data should look like this when you are done:

[image: ]

Now, make the initial value of the cash reservoir be $100 and the income a steady stream of $90 per month. Create a graph that will plot cash, income, and spending.  Run the model for 20 months with a DT of 1 month.

Paste your graph in here:



Let us think about how this model is working. Initially, the cash value will be $100 and the reservoir will gain $90 due to income. That means it will have a value of $190, but the model will then subtract $100 because whenever the value of the cash reservoir is greater than or equal to $20, spending equals $100. This causes the cash reserve to fall to $90. In the next time step, we add $90 of income to get $180 and then again subtract $100 to get a new cash value of $80. The cash reserve continues to drop until it gets down below $20. At this point, spending declines, so each new infusion of cash causes the reservoir to grow again until it gets just above $20, at which point it gets depleted again.

The system oscillates continuously from this point forward. The oscillation arises because money is being added and subtracted in too large of amounts in each model iteration, because the time step is too long. 

Now let us see what happens when we decrease the time step to 0.25 rather than keeping it at 1 month (effectively making it a weekly time step). Change the time step, rerun the model, paste your graph in here, and describe your results. 




What happens to the values of income and spending during the second half of the run (after about 9 months)?


When you get oscillations that you are not expecting, you should always be wary of a possible time step problem. Halve your DT and run the model again. If the oscillations diminish in size or go away, they are artifacts of the time step, and you should continue to cut DT in half until you have consistent results in two successive model runs of different DT value.

12) Now we will examine different types of integration methods that the STELLA software can use to approximate the reservoir contents over time. Though you may not realize it when you are using STELLA, the model you have created consists of a system of interconnected equations that the software must solve. Go to Model > Equation Viewer to see the equations that STELLA is using to model the bank system to see what we mean. For the simplest model that contained only an inflow, the equation being solved was:

cash(t) = cash(t-dt) + (income)*dt

This says that the cash at time t is equivalent to the cash at time t-dt (the previous model iteration) plus the income on the account, which is expressed in a number of dollars per time, multiplied by the time step. Note that the units for this equation work out in that:

$ = $ + ($/month)*month

The equation can also be rearranged to yield:

cash(t) - cash(t-dt) = (income)*dt

If we now recognize that cash(t) - cash(t-dt) is equivalent to a change in cash, we can rewrite that term as dcash to give

dcash = (income)*dt which itself can be rearranged to give:

dcash/dt = income

What this says mathematically is that the change in cash with time is equivalent to the income on the account. 

Let us look at another simple example from the STELLA documentation. Imagine we are dealing with a cooling cup of coffee. A STELLA model of this system might look like:

[image: ]
The heat flow (labeled cooling) from the coffee to the surrounding air is driven by the difference in temperature between the two. When the coffee is very hot, the flow of heat is relatively high (unless you are drinking your coffee in a sauna). When the coffee is cooler, the flow of heat is smaller. Therefore, the temperature vs. time curve looks like a negative exponential function, and the curve is completely continuous in time:

[image: ]

Here is the analytical equation that describes the cooling:



This equation says that the change in temperature with time (dT/dt) is a function of the temperature (T; a is a constant of proportionality that reflects the temperature difference between the coffee and the ambient air). After a bit of calculus, the solution to this equation is:




In the case of the figure above, T0 = 100 °C and a = 0.5.

In simulating the cooling of a cup of coffee, the computer is unable to replicate this continuous curve. Instead, it must calculate what the temperature is at discrete time intervals and then use these temperature-time points to approximate the cooling curve. 

The first step in this approximation is for the computer to divide the total simulation time by the time step length to determine how many times it will have to carry out its calculations. Next, the software creates a list of all of the equations it is going to have to use (input by the user) and the order in which they are to be executed. It then takes the initial conditions of the model and uses them to estimate the change in the stocks (the reservoir contents) and flows over the first time step. The changes in the stocks and flows are added to the initial values to determine the new values at the first time step.  These then become the initial conditions for the next time step. The computer continues in this manner until it has reached the end of the simulation period.

How does the computer actually determine what the changes in the stocks and flows are for each time step? There are three different methods by which this is done.

Create the cooling coffee model shown above in a new STELLA window before you go any further. Give the temperature reservoir an initial value of 100 °C, the constant a value of 0.5, and the cooling flow the following equation: temperature*constant.  We will refer to this model as we describe the different integration methods.  

Euler's method — this method is the simplest. In it, the software first determines what the initial value of the flow is going to be by multiplying the stock in the reservoir by the proportionality constant.    



If you go to Model > Equation Viewer for the cooling coffee model, you will see the text:

OUTFLOWS:
cooling = temperature*constant

In this case, cooling is the flow, temperature is the stock, and constant is the value a.  

The change in the stock (stock) in the first time step is considered to be equivalent to the flow into the stock minus the flow out of the stock over the time step.

In other words:

stock = DT* flow	(Note:  we will use DT and dt interchangeably)

In the cooling coffee model, the stock is equivalent to temperature(t) - temperature(t-dt) and the flow is -cooling since there is no inflow to the temperature reservoir in this model. The STELLA equations page represents this as:

temperature(t) = temperature(t - dt) + (-cooling) * dt

The next step in the Euler method is to update the stock based upon the change in stock calculated above:



The time step is then updated:

time = time + DT

and the computer goes on to determine the next flow since the flow is dependent on the stock.



So here is what the Euler method would do with the model we have just created:  Let us assume that we are using a time step of 1 minute. At t = 0, we know the initial temperature in the cup of coffee is 100 degrees. From the initial temperature, we calculate the cooling outflow, since it is simply equal to the temperature times 0.5 (this would then be 100 °C * 0.5/min = 50 °C/min). Then, we use this outflow to determine the change in the stock over the dt (stock = dt* flow, stock = 1 minute * 50 °C/min = 50 °C). The value will automatically be negative in STELLA because the flow is an outflow that is draining temperature away from the temperature reservoir. We add this change in stock to the existing stock to get the new stock.  





At the beginning of the next time step, the software then calculates the new flow based on this new stock, and the iteration cycle continues.

Let us run the STELLA model you have just created to see what results it gives.  Place a graph pad on your page and keep track of the temperature as a function of time. Run the model using Euler’s method with a DT value of 1 minute for a simulation length of 5 minutes. Note:  Euler’s method is the default, but confirm that you are in fact using it by going to Model > Run Specs and then making sure Euler is selected in the Integration Method area of the Model Settings window that appears (RK2 and RK4 are Runge-Kutta 2 and Runge-Kutta 4, which will be described below).

What happens to the temperature of the coffee over the 5 time units? 


Now, let us see how the Euler method approximation compares to the analytical solution. Set up a converter to solve the analytical equation. D not connect it to anything; simply use a converter as a little calculator to solve the analytical solution at each time step. Your model page should now look like:

  [image: ]

In the analytical temp converter, enter the equation 100*EXP(-0.5*TIME). Set up your graph to show the results both of the Euler temperature approximation and the analytical temperature solution. Run the model with a DT of 1 minute for 5 minutes and paste the graph in below. Describe how the two curves are similar and how they are different.




13) The difference between the curves in question 12 is due to integration error. This error is introduced because the computer has to carry out the calculations in discrete intervals. Here is what is happening. In the STELLA model, the cooling flow at the start of the simulation is dependent on the initial temperature multiplied by some constant. This gives us the total amount of temperature we have to subtract from temp0 to project what temp1 is going to be, but leads to an over-projection relative to the analytical solution. Each successive drop is a bit off for the same reason. Here is a figure that shows what this might look like:

[image: ]

How might one deal with this error? One possibility is to drop the size of DT. If we put more calculations in that the model can base its projections on, then our results are likely to improve. Experiment with DT and see what you get. Describe your results and include a graph of your closest match (be sure to note what you used for DT). 








As you may have noticed, one typically has to drop the time step size quite a lot to get the solution to come out better. This can lead to great increases in the time necessary for a simulation. So, what are some other ways to deal with this problem?

14) Runge-Kutta 2 method: In this method, the software determines the change in the stock over time by using the flow out of the stock at the beginning of the time step (green arrow in figure below) averaged with the flow out of the stock at the end of the time step (pink arrow).  


[image: ]



Let us examine how this works: First, we need to use the following notation:

x is any stock
t is time
f(t,x) is any flow that depends on time and the stock.

The software first determines the initial conditions for the model and the equations relating the stocks, flows, and converters. Next, it uses the Euler method to calculate what the change in stock would be over the first time step.

S1 = change in stock 1 = DT*f(t,x)

Then, it uses this change in stock to update the stock,



and it uses this new stock to calculate the change in stock at time step t+dt (i.e., the end of time step t). In the meantime, it has calculated a new flow to use to calculate the new change in stock, S2:



Finally, it determines the change in the stock at time t by averaging these two values,



and then applies this average value to the initial stock to determine the stock at the next time step.

Why would this be a better way to do the integration? Because it allows the flow value that is computed to reflect the average of the flow values at the beginning and the end of the time step, which is closer to reality than the Euler method, since the flow is actually changing continuously. In contrast, the Euler method determines the change in stock over time from the value of the stock at the beginning of the time step only. The flow is not able to vary over time. 

Let us use this method on your coffee cup model with the original DT from the Euler example (1 minute). Continue to compare your results to the analytical solution. With a DT of 1, is the Runge-Kutta 2 method closer to or further from the analytical solution than the Euler method was (using the same DT)? By approximately how much? Include a graph to illustrate your results. 



15) Runge-Kutta 4 method:   
[image: ]


As you might imagine, the Runge-Kutta 4 method of integration is even more accurate than the other two. It uses four calculations to estimate the change in stock over the time interval, and performs two of these calculations in the middle of the time step. It first estimates the change in stock at each portion of the time step from the following equations:

			Beginning of first half time step

	End of first half time step

	Beginning of second half time step

	End of second half time step

The final change in the stock over the time step is then acquired by averaging all of these values:



Note that this average is a "weighted average." In other words, more weight is given to the two calculations done in the middle of the time step than to the calculations performed at the ends of the time step. The new reservoir contents are then determined in the conventional way:


 

Use this method on your coffee cup model with a DT of 1; compare the results to a) your results using the Euler method and b) your results using Runge-Kutta 2 with respect to how closely they approximate the analytical solution. Use a graph to illustrate your description.




[bookmark: _GoBack]So how do we decide which of these integration methods to use? Runge-Kutta techniques do not work well with integers, so if you are using integers, use the Euler method. On the other hand, use Runge-Kutta if the system you are modeling has inherent oscillations. In this class, we can probably get away with using Euler's method for most things, but you might want to try all three methods and see how they compare.

16) As you have seen, it is important to ensure not only that your model runs (no error messages), but that the results are actually meaningful with respect to the system(s) you are trying to represent. What techniques, either from today’s exercise or others, might you use in future weeks to critically evaluate model behavior?
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