
Thermohaline Circulation Modeling Exercise
On completing this module, students are expected to be able to:
· Create a model of thermohaline circulation based on Stommel's (1961) classic model.
· Experiment with different initial conditions to identify and characterize the multiple steady states of this system and the importance of initial conditions.
· Experiment with a range of perturbations of the system in order to understand what is needed to flip the system from one state to another.
· Use the model as a means of testing hypotheses for the onset and termination of the most recent abrupt climate change event — the Younger Dryas.
Tips for Making the STELLA Model 

Our model of the thermohaline circulation system is going to be very simple — you can see this right away from the fact that there are just four equations listed in the InTeGrate reading. The first two are simple differential equations for T and S; they describe the flows that lead into and out of the T and S reservoirs. You could label these reservoirs del T and del S; these are the names I will use for them below. If you look at equation 1, you see that there are both positive and negative terms on the right-hand side.  
	


These could be combined into one biflow, or they could be two separate flows, one leading into the T reservoir and the other leading out. If you use a biflow (my preference), make sure that the solid arrowhead (as opposed to the dashed arrowhead) of the biflow leads into the T reservoir:

[image: ]
You can switch the polarity of the biflow (flip the arrowheads around) by holding down the control key while clicking on the solid arrowhead.

Set up your del T and del S reservoirs and your heat exchange and salinity exchange flows as illustrated above. The other parts of this system — Q, , , , and R — should all be represented by converters in your model. Once you have made these converters, use action connector arrows to link these converters to the flows, using equations 1–4 in the InTeGrate reading to guide your model construction.

Once you have created the model, input the following initial conditions:

Initial del T = 0.5
Initial del S = 0.5
delTeq = 1  (e.g. maximum temperature difference between the pole and equator due 	to climatic factors; this is what del T would become in the absence of mixing)
delSeq = 1  (e.g. maximum salinity difference between the pole and equator due to 	climatic factors; this is what del S would become in the absence of mixing)
R = 2
 = 6
 = 0.2
Run Specs:  0 to 20; DT = 0.05; Runge-Kutta 4



Testing the Model

Here is what your model output should look like (Note that I have labeled my reservoirs del T and del S, and I have plotted them on the same scale, while I let Q have its own scale):



[image: ]
If you get results like this, then your model is ready to experiment with. If you do not get these results, go back and check the model construction carefully.

Notice that the system is not in steady state to begin with, but that it finds a steady state after about 7 time units (remember from the InTeGrate reading — section entitled "The Model" — that each time unit here is about 200 years). The evolution of the system into the steady state is complex — the salinity difference overshoots the final steady state value, and the temperature difference initially heads off in the wrong direction before it also overshoots the final steady state value. Q, which you can think of as representing the combined Gulf Stream and NADW flows, initially starts off very strong and then declines to 0 at two points before eventually reaching a steady value. Q here is designed so that it cannot be less than 0 (recall that Q depends on , which has an absolute value in the converter) — it is a measure of the magnitude of flow and not the direction of flow. Note that when Q = 0 (i.e., there is no Gulf Stream or NADW flow, so no oceanic mixing), both del T and del S increase and approach the delTeq and delSeq values. High values of Q mean strong mixing between the polar and tropical portions of the ocean, and this will tend to make their temperatures and salinities more similar, thus making del T and del S lower. A high Q value also means strong transport of heat from the tropics to the polar region. A warmer polar region will activate the ice-albedo feedback mechanism, which will tend to increase the temperature of the whole planet.

Experiments with the Thermohaline Circulation Model

1. Varying initial reservoir values.
a) Before running the model, take note of the steady state values of del S, del T, and Q from your first model run — the control case (use a precision of 0.001 in your reporting). 
	
	del S = 
	del T = 
	Q = 

Now, change the del S (your S reservoir) initial value from 0.5 to 0. This would be equivalent to mixing the ocean salinity completely such that there was no difference between the equatorial and polar boxes at the start of the model run.

b) By hand, calculate (show your work) the expected initial values of the two flows (heat exchange = dT/dt and salinity exchange = dS/dt) given equations 1 through 4 in the InTeGrate reading:


(heat exchange)  = 


     (salinity exchange) = 

c) Then, based on the values you found in b, make a prediction about how the reservoirs will begin to change at first and where they will end up at the end of the run — do you think the system will return to the same steady state that it exhibited in 1a)?

d) Run the model and see what happens, enter the final values for the parameters below, and then compare them to the initial model results (from part a) when del S had an initial value of 0.5. Paste in a figure showing the three parameters as part of your answer.

del S =  
	del T = 
	Q = 

e) As you can see, the model achieved a different steady state with the changed initial salinity condition. Now we will explore a wider range of initial values to better understand the steady states of this system. Go to the Sensitivity Analysis Setup panel and send both reservoirs to the Sensitivity Parameters window. Make 11 runs, and have del S start at 0 and end at 1 and del T go from 1 to 0. What you will be doing here is allowing the initial salinity and temperature of the ocean to vary from totally mixed (0 value, representing no difference between equator and pole) to totally unmixed (1 value, representing the maximum difference between equator and pole) and also exploring a range of combinations between these states.  

Be sure to hit the green check mark button after you define the starting and ending values.  Then set up graphs to view the results. First, make a comparative scatter plot, with del S on the X axis and del T on the Y axis. Then, make comparative time series plots of del S, del T, and Q (each on a separate graph).  

Make sure the Run Specs are set to run from 0 to 20 time units with a DT = 0.05. Run the model and watch what happens while you are looking at the del S – del T scatter plot. (Note: you will want to run the model as slowly as possible in order to see what is happening, and you may need to run it a few times. Alternatively, you can make a table of the results to identify the steady state(s).) You can watch the trajectory of each sensitivity run by following the dots as they are plotted on the graph — they move fast when the system is not in steady state, but they become stationary when a steady state is achieved. If there is one steady state, all dots will converge on a single spot; if there are multiple steady states, you will see more than one locus of convergence. These convergences, also known as attractors, can be thought of as similar to topographic depressions — imagine a topographic surface with some peaks and some depressions (see schematic illustration below).  If you were to toss a bunch of marbles onto this surface, they would find their way to the depressions, and the initial starting point of each marble would determine which depression it wound up in. In our model of thermohaline circulation, the depressions represent conditions (values of del S and del T) where the heat exchange and salinity exchange flows both become zero.  

[image: ]
Study the results of your model runs and find out how many steady states there are for this system. Paste your graphs in here and then report the del T, del S, and Q values of each steady state.

f) Characterize the steady states by looking at the magnitude of Q, the mixing flow. High Q would mean a vigorous Gulf Stream – NADW system, which would be associated with lots of heat transport from the equator to the poles. Low Q would mean sluggish thermohaline circulation. Which of the steady states (designated by the del S, del T steady state values) is associated with this high heat transport and a resulting warmer polar region? Which is associated with low heat transport and a resulting colder polar region?  

Looking at figure 8 in the InTeGrate reading, which scenario would be more consistent with the Younger Dryas or other cold episodes?

2. Sensitivity to Initial Conditions
Let us see just how sensitive the system is to very small changes in the initial conditions. 

a) Set the initial value for del T = 0.6, then open the Sensitivity Analysis Setup panel and select just del S. In 11 runs, make the initial del S vary incrementally from 0.28 to 0.33.  Create a table to hold the values of del S. Be sure to tell STELLA that you want the table to be comparative, so that it will hold all of the sensitivity runs. Also, before you run the model, right-click on the column header and use format to turn the precision of the table to free float.  Re-run the model.

You should see that within this range of values for the initial del S, the system changes the ending steady state. What is the apparent threshold value for del S? You can best estimate this by noting which runs most closely bracket the flipping point in your graphs and then going to the table pad to determine what the initial del S value is for those runs.  Paste your del S vs. time plot in here so that I can be sure your model is working correctly.  

b) Is this system always so sensitive to subtle changes in the initial conditions? Explore this by changing the initial del T to 0.7 and then running the model again with the same sensitivity values for the initial del S. Do subtle changes in del S matter in this case?  Paste in a graph of del S vs. time as part of your answer.

c) Think back now to the analogy of a topographic surface with some depressions separated by hills or ridges. The path the system follows is governed by this topography and the initial conditions, which would be analogous to the map coordinates where you release a marble. Imagine that there are two regions of this topography — one has a smoothly curved slope leading straight down into a depression; the other has a sharp ridge separating slopes that head off in different directions, to different depressions. Briefly explain how these two topographic regions correspond to the experiments we did in parts a) and b) of this experiment.

3. Changes in temperature
As you may know, recent climate change has been characterized by greater warming at high latitudes, which tends to reduce the temperature gradient from the poles to the equator. In our model, the temperature difference between the polar and equatorial regions is represented by the del T reservoir.  The value of del T is a function of two things — 1) the density-driven mixing that tends to even out the temperature difference (reducing del T) and 2) the climate-controlled temperature difference (delTeq in our model), which is set to 1. When the planet warms as a whole, the polar regions always warm more than the tropics (and the polar regions cool more during global cooling), so a decrease in delTeq is analogous to warming — and an increase in delTeq represents a cooler climate. If we reduce delTeq, that will tend to drive the system toward a lower del T value.  

Our plan here is to redefine delTeq so that it is not constant over time — we are going to specify a history of change for this parameter. First, turn off the Sensitivity Analyses by deselecting the variables in the Sensitivity Analysis Setup panel. Now, set delTeq equal to time (just type in TIME; STELLA knows what this is) and then click the button that makes it a graphical function. Make the upper limit of the Y axis be 1 and the lower limit be 0.5 (anything lower would be too extreme). Set the time axis to go from 0 to 30 (with 11 data points). After about 6 time units (so that we make the change in delTeq after the system has gotten into a steady state), make delTeq step down from 1 to a lower value (0.9) and then have it remain at that value for times 9, 12, and 15, and then return it to 1 by time 18. Here is what your delTeq should look like:

[image: ]

a) Set the initial del T = 0.82 and del S = 0.43 — very close to one of the steady states we identified above — and before you run the model, try to predict what will happen when we force a warming period on the system (e.g. when the delTeq goes from 1 to 0.9, which reduces the pole-equator temperature gradient). First, use equation 1 in the InTeGrate reading to think about what dropping delTeq would do to dT/dt and, therefore, T.  Then, study the scatter plot you made for question 1e) above and think about how the system would evolve after this small warming occurs. Write your prediction below.

b) Now run the model (set the run time to go from 0 to 30) and briefly describe what happens, focusing on del T, del S, and Q. Does the system return to the same steady state after the warming? Paste a graph of these variables in here as part of your answer.

Run the model again slowly while watching the del T vs. del S scatter plot as it is being drawn (you can use the slider at the bottom of the window to move backward and forward in the model run at a slower speed). Paste a copy of the graph in here and verbally explain what you witnessed while it was being drawn.

c) Repeat this procedure, changing delTeq to 0.6 instead of 0.9 in the middle of the model run (e.g., change the values in the graphic function from 0.9 to 0.6), then run the model and briefly describe what happens, focusing on del T, del S, and Q (paste graphs of these variables in here as part of your answer). Does the system return to the same steady state after the warming?





d) Now run the same model, with the same drop in delTeq (from 1 to 0.6 and back), but change the type of graphical function, from a case with gradual warming and cooling (continuous graphical function) to a case where the changes are instantaneous. Do this by clicking on the discrete button in the graph window (next to the arrow in the figure below):


[image: ]
 
Note that this will impose a very high rate of change going into and out of the warming episode. Run the model and briefly describe what happens, focusing again on del T, del S, and Q (paste your graphs in here as part of your answer). Does the system return to the same steady state after the warming?

e) Now, let us do the same kind of tampering with the other steady state. Using your results from 1e, set the initial values of del S and del T to represent the other steady state.  Decrease delTeq from 1 to 0.8 in times 9, 12, and 15, and make the change gradual (continuous button in the graphical function), not abrupt. Run the model and briefly describe what happens, focusing again on del T, del S, and Q (paste in graphs as part of your answer). Does the system return to the same steady state after the warming?

f) Based on the above experiments, is one steady state more sensitive to warming than the other steady state? By sensitivity, we mean the ease with which you can get the system to flip to the other steady state. In coming up with your answer, consider both the magnitude of warming and the abruptness with which delTeq changes in the different model runs.

g) Look back on your answer to 1f) above, and then determine whether the warmer steady state or the colder one is more susceptible to flipping under the influence of a warming episode.

h) Now, let us look at the inverse of the previous question — would the warmer steady state or the colder one be more susceptible to flipping under the influence of an abrupt cooling episode? Change your model to allow delTeq to increase to 1.2 instead of dropping in times 9, 12, and 15. Then, run the model with the warmer steady state initial values for del T and del S and then with the colder steady state values. Be sure to select the discrete type of graphical function to make the temperature changes be abrupt.

Paste your graphs of del T, del S, and Q in below along with your graph of del T vs. del S. Be sure to label which scenario is which and explain the behavior you observe. 

4. Freshwater pulses
The Younger Dryas event is believed to have been triggered by a change of state in the thermohaline circulation system due to a pulse of fresh water added to the North Atlantic.  Let us think about how this works. Today, the salinity of the equatorial Atlantic is about 35 ppt (parts per thousand) whereas the salinity of the North Atlantic is about 33 ppt (due to freshwater influx), giving a change in salinity of 2 ppt. In our Stommel model, this real life salinity difference translates into a dimensionless del S value of about 0.135 at the end of our warm steady state model run.  

Now consider what would happen if we were to dump more fresh water into the North Atlantic, such as might have occurred at the end of the last ice age when the massive Laurentide Ice Sheet over North America and the Fennoscandian Ice Sheet over northern Europe were melting away. Salinity in the North Atlantic might have dropped to around 30 ppt while salinity in the equatorial Atlantic stayed more or less the same as it is today. The del S between equator and pole in this case would be 5 ppt (35 ppt at the equator minus 30 ppt at the pole), a larger gradient than at present. Physical oceanographer Paola Cessi (1994) figured out that such a pulse of water would represent a flux of 0.2 del S units in Stommel's dimensionless units.  

She also determined that the pulse should be active for a period of between 3 and 5 time units. Let us use 3 time units and make the change starting at time 10 and going through time 12.  The onset of this flux is thought to have been rapid. Find a way to modify your model to simulate this freshwater pulse — you want to add to the del S reservoir for a limited period of time, and you want to impose this on the steady state condition that represents the warmer (high Q and low del T, del S) of the two steady states. 

a) Show how you made this change to your model — paste an image of the altered model below.  

b) Does this pulse knock the system into the colder of the two steady states, or does the system stay in the warmer (stronger Q, smaller del S and del T) state once the pulse has ended? Include a graph of these variables with the freshwater flux added as part of your answer.  

c) Why does Q crash immediately after the freshwater pulse ends? It may help you to carefully study equation 4 in the InTeGrate reading, which governs the density difference, and you may also want to plot delrho as a function of time.

d) Now explore what happens if the freshwater pulse occurs during the “colder” steady state. Use the same pulse as before, but set the initial del T and del S values to the appropriate colder state values. Run the model and describe what happens. Include a graph of del T, del S, Q, and the freshwater influx as part of your answer.

e) Let us take a step back now and think about how the things we have learned from this model relate to the real world case of the Younger Dryas. Summarize this case by completing the table below, using terms like strong or weak for Q, warm or cold for Polar Temp, and freshwater pulse, warming, or cooling for the trigger. The trigger is the change that causes the system to flip from one state to the next (e.g., to the next line in the table), so you’ll have entries in the first two rows of this column, but nothing in the last row. 


	Time
	Q strength
	Polar Temp.
	Trigger 

	Before YD
	
	
	

	During YD
	
	
	

	After YD
	
	
	NA          



The next few questions are meant to get you to sit back and reflect on what you learned, how you learned it, and some of the implications of this learning.

5. How did we find out about the different steady states of this system?  In other words, what did we do with the model to figure this out?

6. Apply what you have learned about this system and speculate on how the rapid melting of the Greenland Ice Sheet might impact the thermohaline circulation system.

[bookmark: _GoBack]7. What has working with this model taught you about the relationship between complex system behavior and complicated model design? Does a model have to be complicated in its design in order to exhibit complex behavior?
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