Eddy Covariance Method

Most of these slides are from:
www.licor.com/env/products/eddy_covariance/resources.html

Airflow in Ecosystems

Typical Variables

- Minimal Eddy Station
 - Product flux of 1 gas and H₂O + supporting weather data
 - concentration of 1 gas
 - concentration of H₂O

- Typical Eddy Station
 - Product flux of 1 gas and H₂O + supporting weather data
 - concentration of 1 gas
 - concentration of H₂O
 - precipitation, etc.

- Full Eddy Station
 - Product flux of 1 gas and H₂O + supporting weather, radiation, and soil data
 - concentration of 1 gas
 - concentration of H₂O
 - precipitation, etc.

Approximate list of variables provided by commonly used eddy covariance stations

Minimal station contains a list of essential variables needed in every application

by permission: Burba, Eddy Covariance Method, Part 2.1, © Li-Cor, 2013

Major Assumptions

- Measurements at a point can represent an upwind area
- Measurements are done inside the boundary layer of interest
- Fetch/footprint is adequate – fluxes are measured from the area of interest
- Flux is fully turbulent – most of the net vertical transfer is done by eddies
- Terrain is horizontal and uniform: average of fluctuations of w is zero, air density fluctuations, flow convergence and divergence are negligible
- Instruments can detect very small changes at high frequency
- Air flow is not distorted by the installation structure or the instruments

by permission: Burba, Eddy Covariance Method, Part 1, © Li-Cor, 2013

Typical Workflow

- Design
 - Set purpose and variables

- Implement
 - Place tower
 - Place instruments
 - Test data collection
 - Test data retrieval
 - Collect data
 - Test data processing
 - Keep up maintenance

- Process
 - Convert units
 - Derive
 - Apply calibrations
 - Rotate
 - Correct for time delay
 - Die trend if needed
 - Average
 - Apply corrections
 - Quality control & fill-in
 - Integrate
 - Analyze/publish

by permission: Burba, Eddy Covariance Method, Part 1, © Li-Cor, 2013

Instrumentation – Sonic Anemometer

- Omni-directional Sonic Anemometer
- Open-path CO₂ / H₂O Gas Analyzer

by permission: Burba, Eddy Covariance Method, Part 2.2, © Li-Cor, 2013
Measurement Principles

\[F_c = (m \, s^{-1}) \times (mg \, m^{-3}) = mg \, m^{-2} \, s^{-1} \]

Sonic Anemometer
- Uses difference in time it takes for an acoustic signal to travel the same path in opposite directions
- ATCI, Campbell, Metek, R.M. Young, Koshin Denki, Gill Instruments, etc.

Gas Analyzer
- Non-dispersive infrared (NDIR) sensor
- Broadband infrared beam transmitted through cell, with absorption band of 4.26 μm for CO₂ & 2.59 μm for H₂O
- Beam is modulated to distinguish it from the background using a chopper wheel

Importance of Footprint

![Diagram showing importance of footprint](image)

Effect of Measurement Height

![Diagram showing effect of measurement height](image)

Effect of Station Height

![Diagram showing effect of station height](image)

Instrument Placement – Rules of Thumb

![Diagram showing instrument placement rules of thumb](image)

Practical Formulas

- Any gas (CO₂, CH₄, NH₃, H₂O, etc.):
 \[F = \rho C_w s \approx \int w' \rho_e' \]
- Sensible heat flux:
 \[H = \rho C_w T' \]
- Traditional H₂O flux:
 \[E = \frac{M_e}{P} \rho_x w' e' \]
- Latent heat flux (H₂O flux in energy units):
 \[LE = \lambda E = \frac{M_e}{P} \rho_x w' e' \]
Eddy Covariance
Flux density: mol/m²/s or J/m²/s

\[F = \rho_a ws = \rho_a \cdot w's' \]

where \(s \) is the mixing ratio of the density of \(\text{CO}_2 \) (\(\rho_c \)) to the density of dry air (\(\rho_a \))

Reynolds Decomposition

\[\bar{\rho}_a w s = (\bar{w}+w')(s' + s')\bar{\rho}_a \bar{\rho}_a' \]

Flux Averaging Rules

\[\bar{xy} = \bar{x} \bar{y} + \bar{x'}y' \]
\[\bar{x'} = 0 \]
\[\bar{x} + y = \bar{x} + \bar{y} \]

Example of “fast” Data

Example of “fast” Data

Connecting Tower to Basin Flux Estimates

- Determine trunk density
- Measure Sap flow flux at several trees
- Study allometric relationships between tree size and trunk DBH (dia. @ breast height)
- More info: baskar mitra – UA postdoc

References
