Eddy Covariance Method

Most of these slides are from:

Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, Lincoln, NE, 331 pp.

www.licor.com/env/products/eddy_covariance/resources.html 1

Airflow in Ecosystems

Typical Variables

- Approximate list of variables provided by commonly used eddy covariance stations
- Minimal station contains a list of essential variables needed in every application

by permission: Burba, Eddy Covariance Method, Part 2.1,© Li-Cor, 2013

Major Assumptions

- Measurements at a point can represent an upwind area
- Measurements are done inside the boundary layer of interest
- Fetch/footprint is adequate fluxes are measured from the area of interest
- Flux is fully turbulent most of the net vertical transfer is done by eddies
- Terrain is horizontal and uniform: average of fluctuations of w' is zero, air density fluctuations, flow convergence and divergence are negligible
- Instruments can detect very small changes at high frequency
- Air flow is not distorted by the installation structure or the instruments

by permission: Burba, Eddy Covariance Method, Part 1,© Li-Cor, 2013

Typical Workflow

Instrumentation – Sonic Anemometer

by permission: Burba, Eddy Covariance Method, Part 2.2, © Li-Cor, 2013

6

Measurement Principles

by Permission: Burba & Anderson, Intro to the EC Method, Li-Cor, 2010

Importance of Footprint

Effect of Measurement Height

Effect of Station Height

Instrument Placement - Rules of Thumb

by permission: Burba, Eddy Covariance Method, Part 3.2, © Li-Cor, 2013

Practical Formulas

by permission: Burba, Eddy Covariance Method, Part 1, © Li-Cor, 2013

Eddy Covariance

Flux density: mol/m²/s or J/m²/s

$$F = \overline{\rho_a ws} \sim \overline{\rho_a} \cdot \overline{w's'}$$

$$s = (\frac{\rho_c}{\rho_a})$$
covariance term

where s is the mixing ratio of the density of CO_2 (ρ_c) to the density of dry air (ρ_a)

Reynolds Decomposition

$$\overline{\rho_a ws} = \overline{(\overline{w} + w')(\overline{s} + s')(\overline{\rho_a} + \overline{\rho_a}')}$$

Flux Averaging Rules

$$\overline{xy} = \overline{x} \, \overline{y} + \overline{x'y'}$$

$$\overline{x'} = 0$$

$$\overline{x+y} = \overline{x} + \overline{y}$$

Principles Example of "fast" Data Actual fast Nighttime: CO₂ release

Connecting Tower to Basin Flux Estimates

- Determine trunk density
- Measure Sap flow flux at several trees
- Study allometric relationships between tree size and trunk DBH (dia. @ breast height)
- More info: baskar mitra UA postdoc

16

References

- The citation for 2013 Eddy Covariance book (most slides): "Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, Lincoln, USA, Hard- and Softbound, 331 pp. ISBN: 978-0-61576827-4"
- The citation for 2010 Eddy Covariance book (slide 7):
 "Burba, G., and D. Anderson, 2010. A Brief Practical Guide
 to Eddy Covariance Flux Measurements: Principles and
 Workflow Examples for Scientific and Industrial
 Applications. LI-COR Biosciences, Lincoln, USA, Hard- and
 Softbound, 211 pp. ISBN: 978-0-61543013-3"