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Why is CO2 Increasing?
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http://www.carboncyclescience.us/what-is-carbon-cycle

Mechanisms — How does this work?
The Plant Carbon Cycle
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Carbon Budget — Conceptual Diagram
WHERE DOES CARBON GO?
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NEE = NEP = GPP — Re
NEP is the balance between 2 large fluxes:
GPP and Ecosystem Respiration
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NOTATION
GPP = NPP + Ra (always a sink)
NPP = fNPP + wNPP + rNPP + mNPP = biomass
NEP = NPP —Rh
GPP = NEP + Re (eddy covariance)
Re =Ra+Rh; Rs=Ra+ Rh (below ground part)
Respiration: autotrophic (plants) or heterotrophic (microbial)
fNPP = foliage component of NP'P;
GPP = gross primary production (GPP >0 denotes photosynthetic uptake);
mNPP = missing component of NPP;
NBP = net biome production (NBP >0 denotes biome uptake);
NECB = net ecosystem carbon balance (NECB >0 denotes ecosystem uptake);
NEE = net ecosystem exchange (NEE >0 denotes ecosystem uptake);
NEP = net ecosystem production (NEP =0 denotes ecosystem uptake);
NPP = net primary production (NPP >0 denotes ecosystem uptake);
R, = autotrophic respiration (R, >0 denotes respiratory losses);
.= ecosystem respiration (R.>0 denotes respiratory losses);
Ry = heterotrophic respiration (R, >0 denotes respiratory losses);
rNPP = root component of NPP;
R.= soil respiration (R, >0 denotes respiratory losses);
VOC = wolatile organic compounds;
wNPP'= wood component of NPP

after Luyssaert, etal, GCB, 2607

Lets look at the entire budget:
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What are the
Processes?

* Photosynthesis

® Respiration _—

¢ Allocation

ROman Hobler, flickr, CC-BY-SA

Modified from Brooks, Univ.Utah
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Photosynthesis

* Nutrients control the
amount of leaf area and
how well it will work

* Leaf area controls how
much light is absorbed

* Humidity controls CO,
uptake during the day

* Soil water controls CO,

Respiration

* Temperature
controls rate

* Nutrient
concentration
controls amount

* Closely related to

photosynthesis and
growth

uptake seasonally ! Over a year L
ooy 20 respiration is about Brooks
im Stanton, flickr, CC-BY-2. 500/0 of
photosynthesis
Modified from Brooks, Univ.Utah 13 Modified from Brooks, Univ.Utah 14
Allocation Controls on NPP - Temperature
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Controls on NPP - Water
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i.e. a little water goes a long way!
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How do we measure

Photosynthesis and Respiration?
Infrared Gas Analyzer (IRGA), generally to
measure response to environment and photo-

xtrapolate

Modified from Brooks, Univ.Utah 18




How do we Measure? Below ground Allocation

s Lih‘er'fall

AStorage Car';onl in:
TBCA A[Cs+C+Cg] :ﬁetr

TBCA = Total
below-ground
carbon allocation

Fs+Fe
Soil Respnrcmon

Like measuring the flow of water into a tub from an
underwater faucet (= outputs - inputs + storage change)
TBCA = F - F, + storage change

Modified from Brooks, Univ. Utah

Classification of Biomes by Ta & Ppt
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Back to Budget: How much is there?
Composition of the Atmosphere by Volume
Mz

78.084 %
Molecular Weights:

* Dry Air~ 29 g/mol
¢ CO2~44g/mol

¢ Carbon~ 12 g/mol

O 1000 Kg = 1 metric ton

20.946 % Giga = 109
ey oosa06 How much Carbon is in the Atmo?
\ M, ~5.14 x 108 Kg
@ 400 ppmV x 44/29 = 607 ppmM
0.000607 x M, =
g.g;s “ ~3.12 x 10> Kg CO,
h b x 12/44 =851 x 102 Kg C
0001818 % 851 x 10° metric tons C
r01_:u:1m5§ % 'g.guusza% =851 GTC
mmm“%‘ 'E_mns% Image Source: Wikimedia Commons 22
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How much is there?
Global Ecosystems — Gross Primary Production
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How to deal with all these numbers?
Use a Systems Approach
Develop a Global Balance or Budget

Reservoir 1

Flux 2->1
Flux 1->2

Reservoir 2

Figure 3.5 CARBON IS EXCHANGED between the atmo-  carbon from the atmosphere as they add, but human activ-
sphere and reservoirs on the earth. The give the it ion and fossil-fuel burning) is in-
approximate annual fluxes of carbon (in the form of carbon  creasing atmospheric carbon by some three billion metric
dioxide) and the approximate amount stored in each reser-  tons yearly. The numbers are based on work by Bert Bolin
vaoir in billions of metric tons. The existing cycles—one on  of the University of Stackholm.
land and the other in the oceans—remove about as much

Scientific American, Sept.1989? o7

The global carbon cycle for the 1990s (GTC)
Gent, Nature Climate Change 2, 25-26 (2012)

pre-industrial (black), anthropogenic (red)

= Atmesphere
~ | 597+ 165

) A

120 | T T
Land

me 1 )as s’i‘r?k Land-use

i GPP 6 change 64
Weathering spiration

0.2

h | Viegetation, soil
- ‘!anddttrilws
~. | 2300 +101-140

S
Fassil fuels
|3.?00-2-1d

e . | Surface ocean
- ~Js:oo +18
By R

Marine biota
==z ]

Intermediate and
desp ocesn
37100 + 100

face sediment
150

wrd

i

N

2013 IPCC 5t Rpt Phys. Sci. Basis 22




