AmeriFlux Site and Data Exploration System

Primary Site Information

Site name: Valles Caldera Ponderosa Pine / US-Vcp

Primary Investigator(s): Litvak, Marcy E.

Country: USA

State/Province: New Mexico

Measurement status: Active, core measurements presently being made

Data availability status: Data available

Types of available data products:
- L2
- L3
- L4
- Bio data

Date available (mm/dd/yyyy):
- From 01/01/2007
- To 12/31/2008

Vegetation (IGBP):
- Evergreen needleleaf forest

Elevation (m):
- 2542

Longitude (+/−, E/W):
- 106.5974

Latitude (+/−, N/S):
- 35.8624

Instruments:
- Temperature/Humidity Probe: Brand: Vaisala; Model: HMP45C
- Barometric Pressure Sensor: Brand: Vaisala; Model: PTB101B
- Open Path CO2/H2O Gas Analyzer: Brand: LI-COR; Model: LI-7500
- Net Radiometer: Brand: Kipp & Zonen; Model: CNR1
- Soil Heat Flux Plate: Brand: Radiation and Energy Balance Systems; Model: HFT-31
- Soil Water Content Refractometer: Brand: Campbell Scientific; Model: CS616

Meteorological variables

- AdvF
- CO2
- DVO3
- FH2O
- GEP
- H2O2
- NEE
- PAR
- PARdir
- PRECam
- PRESS
- Rn
- Rs
- SFC
- SH
- SLE
- SWC
- Tmax
- Tbole
- TSdepth
- Tsonic
- WATERdepth
- ZEC
- ZL

Biological variables

- APAR
- CH4
- APARpct
- DryAirDen
- FC
- FCH4
- F03
- FG
- GC
- H2O
- LE
- PAR
- Leafwetness
- PAROut
- Rg
- Rgl
- RglOut
- RglRed
- RH
- REL
- SnfH2O
- SfH2O
- SfVapor
- S信访
- T3
- Tdp
- Tdew
- Tsho
- Tskin
- Ust
- WetAirDen
- WS

*not available in L2 standardized, L3 and L4 files

Data Products

Full datasets for selected site(s) are available at:
- Level 2 files
- Level 2 standardized files - ASCII (*.csv) and netCDF (*.nc)

Click on marker to see full information about a site

Show sites | Create dataset | Reset
General Site Information

- **Sitename/FLUXNET ID:** Valles Caldera Ponderosa Pine / US-Vcp
- **Country:** USA
- **State/Province:** New Mexico
- **Sponsor:** NSF
- **Latitude (+N/-S):** 35.8624
- **Longitude (+E/-W):** -106.5974
- **Elevation:** 2542m
- **Status:** Active, core measurements presently being made
- **Vegetation (IGBP):** Evergreen needleleaf forest

Principal Investigator(s)

- **Litvak, Marcy E.**
 University of New Mexico
 Biology Department
 227 Castetter Hall
 Albuquerque, New Mexico 87131-0001
 Phone: 505-277-5580
 Fax: 505-277-0304
 Email: miltvak@unm.edu

Data and additional information

- **Types of available data products:** L2
- **Period of available data:** from 01/01/2007 to 12/31/2008
- **History of data changes and submissions:** History
- **CDIAC L2 standardized files processing report:** Processing report
- **CDIAC L2 standardized files summary report:** Summary
- **History of data changes and submissions (gap filled):** History
- **CDIAC L2 standardized files processing report (gap filled):** Processing report
- **Climate:** Semi-arid, montane
- **Dominant species composition:** Overstory: Pinus ponderosa; Understory: Gambel oak scrubland (Quercus gambelii)
- **Vegetation type:** Ponderosa pine
- **Original data:** Data link
- **Ameriflux network data:** Data link
- **Ameriflux biological data:** Data link
- **MODIS Land product subsets:** Data link
- **Additional information:** Data link
- **Additional information 2:** Data link

Meteorological/Flux measurements

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Description</th>
<th>Repeat</th>
<th>Processing</th>
<th>Offset</th>
<th>Offset units</th>
<th>Sign convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>umol/mol</td>
<td>CO2 concentration</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux from atmosphere into ecosystem</td>
</tr>
<tr>
<td>CO2</td>
<td>umol/mol</td>
<td>CO2 concentration</td>
<td></td>
<td></td>
<td></td>
<td>(n/a)</td>
<td>positive -- upward flux from ecosystem into atmosphere</td>
</tr>
<tr>
<td>FC</td>
<td>umol/m2/s</td>
<td>CO2 flux</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Units</td>
<td>Description</td>
<td>Repeat</td>
<td>Processing</td>
<td>Offset</td>
<td>Offset units</td>
<td>Sign convention</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
<td>--------</td>
<td>------------</td>
<td>--------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>CO2</td>
<td>umol/mol</td>
<td>CO2 concentration</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux from atmosphere into ecosystem</td>
</tr>
<tr>
<td></td>
<td>umol/mol</td>
<td>CO2 concentration</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>positive -- upward flux from ecosystem into atmosphere</td>
</tr>
<tr>
<td>FC</td>
<td>umol/m2/s</td>
<td>CO2 flux</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux from atmosphere into ecosystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>positive -- upward flux from ecosystem into atmosphere</td>
</tr>
<tr>
<td>FH2O</td>
<td>mmol/m2/s</td>
<td>Water vapor flux</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux toward ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>positive -- upward flux away from ground</td>
</tr>
<tr>
<td>GPP</td>
<td>umol/m2/s</td>
<td>Gross primary production defined as = RE - NEE</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>GPP=RE-NEE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>positive -- production</td>
</tr>
<tr>
<td>H</td>
<td>W/m2</td>
<td>Sensible heat flux</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux toward ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>positive -- upward flux away from ground</td>
</tr>
<tr>
<td>H2O</td>
<td>mmol/mol</td>
<td>Water vapor concentration</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux toward ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>positive -- upward flux away from ground</td>
</tr>
<tr>
<td>LE</td>
<td>W/m2</td>
<td>Latent heat flux</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>negative -- downward flux toward ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>positive -- upward flux away from ground</td>
</tr>
<tr>
<td>PAR</td>
<td>umol/m2/s</td>
<td>Incoming photosynthetically active radiation</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>PAR=RE-NEE</td>
</tr>
<tr>
<td>PREC</td>
<td>mm</td>
<td>Precipitation</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>PREC=RE-NEE</td>
</tr>
<tr>
<td>PRECCum</td>
<td>mm</td>
<td>Precipitation annual cumulative</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>PREC=RE-NEE</td>
</tr>
<tr>
<td>PRESS</td>
<td>kPa</td>
<td>Barometric pressure</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>PRESS=RE-NEE</td>
</tr>
<tr>
<td>RE</td>
<td>umol/m2/s</td>
<td>Ecosystem respiration</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>RE=RES</td>
</tr>
<tr>
<td>Rg</td>
<td>W/m2</td>
<td>Incoming global solar radiation</td>
<td></td>
<td>Filled</td>
<td>(n/a)</td>
<td>(n/a)</td>
<td>Rg=RS</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Description</td>
<td>Filled</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREC</td>
<td>mm</td>
<td>Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREC</td>
<td>mm</td>
<td>Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECCum</td>
<td>mm</td>
<td>Precipitation annual cumulative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECCum</td>
<td>mm</td>
<td>Precipitation annual cumulative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>kPa</td>
<td>Barometric pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>kPa</td>
<td>Barometric pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>umol/m²/s</td>
<td>Ecosystem respiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>umol/m²/s</td>
<td>Ecosystem respiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rg</td>
<td>W/m²</td>
<td>Incoming global solar radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rg</td>
<td>W/m²</td>
<td>Incoming global solar radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rgl</td>
<td>W/m²</td>
<td>Incoming long wave radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rgl</td>
<td>W/m²</td>
<td>Incoming long wave radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RglOut</td>
<td>W/m²</td>
<td>Outgoing long wave radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RglOut</td>
<td>W/m²</td>
<td>Outgoing long wave radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RgOut</td>
<td>W/m²</td>
<td>Outgoing global solar radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RgOut</td>
<td>W/m²</td>
<td>Outgoing global solar radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>%</td>
<td>Relative humidity of air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>%</td>
<td>Relative humidity of air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>W/m²</td>
<td>Net radiation</td>
<td></td>
<td>negative -- a loss of heat at earth surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>W/m²</td>
<td>Net radiation</td>
<td></td>
<td>positive -- a gain of heat at earth surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWC</td>
<td>%</td>
<td>Soil moisture volumetric content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWC</td>
<td>%</td>
<td>Soil moisture volumetric content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>deg C</td>
<td>Air temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>deg C</td>
<td>Air temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>deg C</td>
<td>Soil temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>deg C</td>
<td>Soil temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UST</td>
<td>m/s</td>
<td>Friction velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UST</td>
<td>m/s</td>
<td>Friction velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPD</td>
<td>kPa</td>
<td>Vapor pressure deficit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPD</td>
<td>kPa</td>
<td>Vapor pressure deficit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WD</td>
<td>deg</td>
<td>Wind direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WD</td>
<td>deg</td>
<td>Wind direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>m/s</td>
<td>Wind speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>m/s</td>
<td>Wind speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>FG</td>
<td>TS1</td>
<td>T5depth1</td>
<td>TS2</td>
<td>T5depth2</td>
<td>PREC</td>
<td>RH</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>W/m²</td>
<td>deg C</td>
<td>cm</td>
<td>deg C</td>
<td>cm</td>
<td>mm</td>
<td>%</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>-1.299</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>63.225</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>-1.331</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>65.747</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>-1.372</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>68.679</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>-1.407</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>68.797</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>-1.435</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>70.786</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>-1.484</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>70.799</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>-1.501</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>72.332</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>-1.524</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>70.355</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>-1.561</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>67.879</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
<td>-1.629</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>71.375</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>-1.679</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>72.838</td>
</tr>
<tr>
<td>18</td>
<td>29</td>
<td>-1.71</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>72.64</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>-1.751</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>70.726</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>-1.815</td>
<td>5</td>
<td>-6999</td>
<td>-6999</td>
<td>0</td>
<td>68.926</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AE</th>
<th>AF</th>
<th>AG</th>
<th>AH</th>
<th>AI</th>
<th>AJ</th>
<th>AK</th>
<th>AL</th>
<th>AM</th>
<th>AN</th>
<th>AO</th>
<th>AP</th>
<th>AQ</th>
<th>AR</th>
<th>AS</th>
<th>AT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rg</td>
<td>Rgdif</td>
<td>PARout</td>
<td>W/m²</td>
<td>W/m²</td>
<td>W/m²</td>
<td>W/m²</td>
<td>W/m²</td>
<td>mmol/mol</td>
<td>mmol/mol</td>
<td>mmol/mol</td>
<td>m</td>
<td>umol/mol/s</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-9999</td>
<td>-9999</td>
<td>-9999</td>
<td>4.183</td>
<td>185.57</td>
<td>247.86</td>
<td>6.718</td>
<td>-9999</td>
<td>-9999</td>
<td>-9999</td>
<td>18.5</td>
<td>-9999</td>
<td>-9999</td>
<td>-9999</td>
<td>-6999</td>
</tr>
</tbody>
</table>