Measuring Earth with GPS, Unit 1: Lecture Notes Page

Karen M. Kortz (Community College of Rhode Island) and Jessica J. Smay (San Jose City College)

As you listen to the lecture, take notes in the space below.

Part 1: How it works

A receiver obtains signals from			There is a network of
*	calculated by determining the	e distance to	satellites. The
•	position	•	position
•		• time	

Part 2: High-precision permanent GPS stations

Write in the letters to label each component of a high-precision permanent GPS station.

- A. GPS antenna inside of dome
- **B.** Monument solidly attached into the ground with braces
- C. Solar panel for power
- **D.** Equipment enclosure (GPS receiver, power/batteries, communications/radio/modem,

What are considerations that should be made when installing a GPS station?

What causes a high-precision permanent GPS station to move?

At any given time, a high-precision permanent GPS station can measure movements of cm.

Draw this on the ruler.

Several years of data can be used to measure velocities as small as _____ mms per year.

Draw this on the ruler.

Graphical representation of high-precision permanent GPS station data.

Part 3: GPS and society

Below is a list of what GPS can measure. Why is studying these types of GPS motion beneficial to society?

Movement of ground...

due to plate motion

near earthquake faults

during earthquakes

due to movement of magma

due to glacier size

due to snow depth

due to compaction

due to groundwater

due to lake size

from a landslide

Sea level

Vegetation growth

Amount of soil moisture

Amount of water in the atmosphere Amount of ash in the atmosphere