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■ Abstract Oxidative stress—the production and accumulation of reduced oxygen
intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hy-
droxyl radicals—can damage lipids, proteins, and DNA. Many disease processes of
clinical interest and the aging process involve oxidative stress in their underlying etiol-
ogy. The production of reactive oxygen species is also prevalent in the world’s oceans,
and oxidative stress is an important component of the stress response in marine organ-
isms exposed to a variety of insults as a result of changes in environmental conditions
such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As
in the clinical setting, reactive oxygen species are also important signal transduction
molecules and mediators of damage in cellular processes, such as apoptosis and cell
necrosis, for marine organisms. This review brings together the voluminous literature
on the biochemistry and physiology of oxidative stress from the clinical and plant
physiology disciplines with the fast-increasing interest in oxidative stress in marine
environments.

INTRODUCTION

Early History of Oxygen

The geological record provides convincing evidence of the long history of life on
Earth, starting in the Archean as far back as 3.8 Gyr (1). The atmosphere of Earth
was originally highly reduced and dominated by microbes (2), but by the mid-
to-early Archean cyanobacteria capable of oxygenic photosynthesis had evolved
(1, 2). With an abundance of carbon dioxide (CO2), water (H2O) as a reductant, and
solar radiation, oxygenic photosynthesis by cyanobacteria spread and evolved into
other taxa by serial endosymbioses (3). As a result, molecular oxygen, or dioxygen
(O2), appeared in significant amounts in the Earth’s atmosphere ∼2.5 Gyr and
accumulated in the upper atmosphere. The accumulation of O2 changed terrestrial
and shallow oceanic habitats and provided strong selective pressures on anaerobic
life forms existing at the end of the Archean. The evolution of aerobic respiration,
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with its greater efficiency and higher yields of energy, is believed to have been
critical to the development of complex multicellular eukaryotic organisms.

Theory of Oxygen Toxicity

It has only been fifty years since it was proposed that free radicals are responsible
for the toxic effects of oxygen (4). Atmospheric O2 in its ground state is distinctive
among the elements because it has two unpaired electrons (and thus is known
as a biradical) (5–8). This property makes O2 paramagnetic, which significantly
limits its ability to interact with organic molecules unless it is “activated.” The
univalent reduction of molecular oxygen produces reactive intermediates such as
the superoxide radical (O2

−), singlet oxygen (1O2), hydrogen peroxide (H2O2),
hydroxyl radical (HO•), and finally water (H2O) (5–8). Often biologists label all
of the reduction products of oxygen as free radicals. As defined above, however, a
free radical is an atom or molecule with an unpaired electron. It therefore is more
appropriate to refer to the intermediate reduction products of oxygen as activated
and not as free radicals, but for consistency I use reactive oxygen species (ROS)
throughout and include H2O2 in that definition.

All photosynthetic and respiring cells produce ROS, including O2
− via the uni-

valent pathway; H2O2 is formed by the continued reduction of O2
−; and eventually

HO• is formed and then reduced to the hydroxyl ion and water (5–8). For biological
systems the production of ROS is directly and positively related to the concentra-
tion of O2 (9). Oxidative stress, the production and accumulation of ROS beyond
the capacity of an organism to quench these reactive species, can damage lipids,
proteins, and DNA, but ROS can also act in signal transduction (5–8). The central
purposes of antioxidant defenses in biological systems are to quench 1O2 at the site
of production and to quench or reduce the flux of reduced oxygen intermediates
such as O2

− and H2O2 to prevent the production of HO•, the most damaging of
the ROS (5–8).

Reactive Oxygen Species

SINGLET OXYGEN In biological systems 1O2 is produced through several photo-
chemical and chemical pathways. Singlet oxygen is often produced by photosen-
sitization reactions in which molecules absorb light of a specific wavelength and
are raised to a higher energy state. The energy can then be passed to O2 and forms
1O2 while the sensitizing molecule returns to its ground state. The lifetime of 1O2

is ∼3.7 μs in aqueous media. Its high reactivity with cellular components is con-
trolled primarily by diffusion, whose mean distance has been estimated to be ∼82
nm; therefore, site-specific effects in biological systems are likely to occur with
this ROS (5–8).

SUPEROXIDE RADICALS O2
− can act as either an oxidant or a reductant in biolog-

ical systems. The dismutation of O2
−, leading to the formation of H2O2, occurs

spontaneously or is catalyzed by the antioxidant enzyme superoxide dismutase with

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
6.

68
:2

53
-2

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 V

as
sa

r 
C

ol
le

ge
 o

n 
04

/0
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



6 Jan 2006 10:46 AR ANRV265-PH68-10.tex XMLPublishSM(2004/02/24)
P1: OKZ /OKZ P2:
OJO

OXIDATIVE STRESS IN MARINE ENVIRONMENTS 255

a rate constant of 2 × 109 mol−1 s−1 (5). In its protonated state (pKa = 4.8) O2
−

forms the perhydroxyl radical (•OOH), which is a powerful oxidant (5–8), but its bi-
ological relevance is probably minor because of its low concentration at physiologi-
cal pH. Within the aprotic interiors of biological membranes, such as mitochondrial
or thylakoid membranes, O2

− is stable (10, 11) and can diffuse across the mem-
brane in a concentration-dependent manner but at extremely slow rates (2.1 × 10−6

cm s−1) (5–8). Although SOD reduces the steady-state concentration of O2
− by

several orders of magnitude, O2
− still has significant, and independent, damag-

ing potential (12) with a lifetime of 50 μs and a diffusion distance of ∼320 nm
(5–8).

HYDROGEN PEROXIDE Because hydrogen peroxide is uncharged, it readily dif-
fuses across biological membranes. H2O2 causes significant damage because it is
not restricted to its point of synthesis in the cell and can enter into numerous other
reactions. Exposure to H2O2 can damage many cellular constituents directly, such
as DNA and enzymes involved in carbon fixation (5–8). H2O2 is also involved in
pathways such as programmed cell death, or apoptosis (8). If H2O2 is further re-
duced, it can produce HO•. One source of electrons for that reduction in biological
systems is transition metals via so-called Fenton chemistry, such as the conversion
of Fe from its ferrous to ferric form (5–8).

HYDROXYL RADICAL The HO• is the most reactive oxygen radical. It has tremen-
dous potential for biological damage because it attacks all biological molecules
in a diffusion-controlled fashion, with a lifetime of 10−7 s and mean diffusion
distance of 4.5 nm. It also tends to initiate free radical chain reactions, can oxidize
membrane lipids, and causes proteins and nucleic acids to denature (5–8). The
production of HO• in biological systems is regulated by the availability of ferrous
iron. Any recycling of iron from the ferric to the ferrous form by a reducing agent
can maintain an ongoing Fenton reaction, leading to the generation of HO•. One
excellent reducing agent is O2

−, which participates in the metal-catalyzed Haber-
Weis reaction (6–8). Metals other than iron (e.g., copper) may also participate
in these electron transfer reactions by cycling between the oxidized and reduced
states.

REACTIVE NITROGEN SPECIES Many cells also produce nitric oxide, or nitrogen
monoxide (NO•), a molecule implicated initially in neurotransmission but now
a known participant in diverse processes involving oxidative stress (13). Nitric
oxide synthase produces NO•, which can react with O2

− to form the peroxynitrite
anion (ONOO−), a potent oxidant (12). Because the solubility of NO• is similar
to that of H2O, the former can readily diffuse across biological membranes. It
can then react at near-diffusion-limited rates with free radicals, especially O2

−, to
form ONOO−, which can diffuse across biological membranes at rates 400 times
greater than does O2

− (14, 15). The half-life of ONOO− is <0.1 s at physiological
pH, mostly because of its high reactivity with organic molecules, especially lipids.
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The high concentrations of NO• may create significant competition between NO•

and SOD for O2
−. This balance between the competition for O2

− may be a major
determinant of oxidative stress in many organisms. Many investigators are now
re-evaluating the role of O2

− in oxidative stress because of these new insights
and because many of the observed in vitro effects ascribed to O2

− may in fact be
mediated by ONOO− (8).

Cellular Sites of ROS Production

CHLOROPLASTS Chloroplasts, because of their photosynthetic nature, are hyper-
oxic, produce ROS, and are susceptible to oxidative stress. ROS in the chloroplast
may damage photosystem (PS) II, primarily through oxidative degradation of the
D1 protein (5, 16–19), and also inhibit the repair of damage to PS II (20). In addi-
tion to 1O2 (21), O2

− and HO• also are produced in the PS II reaction center (22).
The reducing side of PS I can reduce O2 to O2

− by the Mehler reaction and is the
most significant site of O2

− production in the chloroplast (5, 16, 23). The produc-
tion of O2

− increases under stressful conditions, such as exposure to xenobiotics or
pollutants, high visible irradiances, exposure to ultraviolet radiation (UVR), and/or
exposure to thermal stress. This elevated production can overwhelm antioxidant
defenses to produce damage to both PS II and to the carbon fixation process (5, 16).

MITOCHONDRIA Two main sites of O2
− generation in the inner mitochondrial

membrane are (a) NADH dehydrogenase at complex I and (b) the interface between
ubiquinone and complex III. Once generated, the O2

− is then converted to H2O2

by spontaneous dismutation or by SOD (24). The integrity of the inner membrane
and the associated complexes is essential to oxidative phosphorylation. The inner
membrane is also permeable to H+. Although it causes energy loss, this H+ leakage
can be beneficial because it reduces ROS production. The loss of energy and the
production of ROS via H+ leakage can also be regulated by specific uncoupling
proteins, which themselves are upregulated by the production of ROS (25).

ENDOPLASMIC RETICULUM The endoplasmic reticulum of animals, plants, and
some bacteria contain cytochromes collectively known as cytochrome P-450.
Cytochrome P-450 is involved in several detoxification processes, including hy-
droxylations, dealkylations, deaminations, dehalogenations, and desaturations that
involve the reduction of O2 (8). These mixed-function oxygenase (MFO) reactions
add an O2 atom to an organic substrate using NADPH as the electron donor. Su-
peroxide can be produced by microsomal NADPH-dependent electron transport
involving cytochrome P-450.

MICROBODIES Peroxisomes and glyoxysomes are subcellular organelles that con-
tain enzymes involved in the β-oxidation of fatty acids and in photorespiration,
such as glycolate oxidase, catalase, and several peroxidases. Found in both animals
and plants, these organelles were initially believed to be involved in detoxification
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reactions and the quenching of H2O2. The H2O2 synthesized by these microbod-
ies may also contribute to the pool of signal transduction molecules (26). In the
glyoxisomes of plants, glycolate oxidase produces H2O2 in a two-electron transfer
from glycolate to oxygen (26). In addition to H2O2, glyoxisomes produce O2

− via
a xanthine oxidase reaction with purines (26, 27). The dismutation of O2

− to H2O2

also occurs via SOD in both peroxisomes and glyoxisomes (28).

THE DUAL ROLE OF REACTIVE OXYGEN SPECIES

Oxidative Damage

Reactive oxygen species are both agents of disease and cellular damage, but they
are also participants in many normal cellular functions. Below I briefly describe
some of the major sites of damage and pathways in which ROS plays an important
regulatory role.

OXIDATIVE DAMAGE TO LIPIDS The reaction of ROS, especially of HO•, with
lipids is one of the most prevalent mechanisms of cellular injury and is dependent
on the degree of membrane fluidity, which in turn is a function of the saturation
state of the lipid bilayer (8). The degradation products of lipid peroxidation are
aldehydes, such as malondialdehyde, and hydrocarbons, such as ethane and ethy-
lene (29, 30). Lipid peroxidation in mitochondria is particularly cytotoxic, with
multiple effects on enzyme activity and ATP production as well as on the initiation
of apoptosis (31).

OXIDATIVE DAMAGE TO PROTEINS Oxidative attack on proteins results in site-
specific amino acid modifications, fragmentation of the peptide chain, aggregation
of cross-linked reaction products, altered electrical charge, and increased suscep-
tibility to removal and degradation. The amino acids in a peptide differ in their
susceptibility to attack, and the various forms of ROS also differ in their potential
reactivity. The primary, secondary, and tertiary structure of a protein determines the
susceptibility of each amino acid to attack by ROS (8, 30). For many enzymes, the
oxidation by O2

− of iron-sulphur centers inactivates enzymatic function (30, 32),
and other amino acids, such as histidine, lysine, proline, arginine, and serine, form
carbonyl groups when oxidized (33). A wide range of proteins and their amino
acid building blocks is damaged or degraded by ROS (34), and the accumulation
of these proteins in cells has been hypothesized to be part of the aging process
(35).

OXIDATIVE DAMAGE TO DNA The generation of ROS can induce numerous le-
sions in DNA that cause deletions, mutations, and other lethal genetic effects.
Both the sugar and the base moieties are susceptible to oxidation, causing base
degradation, single-strand breakage, and cross-linking to proteins (36, 37). In vitro,
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H2O2 or O2
− cannot by themselves cause strand breaks under normal physiolog-

ical conditions, and therefore, their toxicity in vivo is most likely the result of
Fenton reactions in the presence of a transition metal (36, 37). Both prokaryotic
and eukaryotic cells have DNA repair enzymes; for a cell with DNA damage, it is
the balance between damage and repair that determines the fate of that cell (38).

Signal Transduction

ROS are also produced for specific cellular functions, and it has been proposed that
the antioxidant systems of cells regulate intracellular levels of ROS so that they
can function as second messengers (39). ROS as second messengers are important
for the expression of several transcription factors and other signal transduction
molecules such as heat shock–inducing factor, nuclear factor, the cell-cycle gene
p53, mitogen-activated protein kinase, and oxyR gene products (40, 41).

Oxidative stress also plays a role in apoptosis through several cell-cycle genes
(42). Two apoptotic pathways, the death-receptor and the mitochondrial pathways,
have been described. The mitochondrial pathway is commonly associated with
DNA damage and upregulation or activation of p53 (43). Exposure to UVR also
causes ROS production in the electron transport chain of mitochondria (44) and can
lead to apoptosis through the activation of caspases (45). Both cellular necrosis and
apoptosis, which have overlapping features, can result from oxidative stress and
lead to cell death (42). Whereas high levels of oxidative stress cause cell necrosis,
lower levels either cause DNA damage and cell-cycle arrest or initiate apoptosis
(8, 41).

Exposure to ROS and subsequent apoptosis are also common in higher plants,
and many caspases homologous to animal caspases have been identified (46, 47).
ROS are also an important component of plant defense systems against pathogens
(48); O2

− is directly involved in the apoptotic hypersensitive reaction of higher
plants against pathogens (49). Interestingly, caspases have also been identified in
unicellular photoautotrophic eukaryotes (i.e., phytoplankton) as well as in simple
metazoans, and when compared to more derived plant and metazoan caspases, they
are regulated in a similar fashion during experimentally induced apoptosis (50, 51).

One of the most interesting signal transduction roles for ROS is the mediation
of morphogenic events associated with the onset of mutualistic symbiotic associ-
ations. The symbiosis of the serpiolid squid (Euprymna scolopes) light organ and
the bioluminescent bacterium Vibrio fisheri is one of the best understood systems
in terms of the attraction, initiation, and ultimate establishment of a symbiotic as-
sociation that involves dramatic changes in host morphology to accommodate the
symbionts (52). When the V. fisheri cells enter the eventual light organ, they first
encounter the hostile environment of the ducts and then the crypt space, which
includes epithelial cells that line the crypt (52). Potential symbionts associate
themselves with the microvilli of the crypt epithelial cells and induce changes
in the light-organ crypt epithelial cells that help maintain this unique symbiosis
(52). Macrophages are abundant in the light-organ crypt and apparently patrol this
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space for nonspecific bacteria, while leaving symbiotic bacteria unharmed (53).
Additionally, the epithelial cells apparently secrete a halide peroxidase that pro-
duces bacteriocidal hypohalous acid from H2O2, which presumably comes from
the phagocytic activity of the macrophages (52, 53). Colonization of the crypt by
V. fisheri in this hostile environment requires the removal of H2O2 using a cata-
lase enzyme that is required for bacterial competency to successfully establish the
symbiotic association (52–54). In addition, the luciferase enzyme of V. fisheri is
a MFO that utilizes molecular oxygen (54). The luciferase enzyme is expressed
in large quantities and, combined with bacterial respiration, can maintain a low
pO2 that subsequently results in lower ROS production (9) and an environment
conducive to the successful maintenance of the symbiosis (54).

ANTIOXIDANT DEFENSES

Enzymatic Antioxidants

SUPEROXIDE DISMUTASE Superoxide dismutase (SOD) (EC 1.15.1.1), originally
discovered by McCord & Fridovitch (55), occurs as different metalloproteins with
different cellular distributions. The Cu/Zn SOD is principally a cytosolic enzyme
in eukaryotes but is also found in chloroplasts, bacteria, and peroxisomes, and
as an extracellular enzyme (8, 28). The Mn form of SOD is principally found in
mitochondria and bacteria, and the Fe SOD is found in chloroplasts and bacteria
(5–8). The prokaryotic Mn SOD and Fe SOD and the eukaryotic Cu/Zn SOD are
dimers, whereas the Mn SODs of mitochondria are tetramers, with each subunit
consisting of 151 amino acids (5–8). All forms of the SOD are nuclear-encoded
and are targeted to their respective subcellular compartments by an amino-terminal
targeting sequence (56). SOD is an efficient catalyst and can keep the steady-state
concentration of O2

− at 10−10 mol liter−1 (5–8). With SOD concentrations at 10−5

mol liter−1, any molecule of O2
− is more likely to encounter a molecule of SOD

then another O2
− (5–8). At a rate constant (k2) of 2 × 109 mol liter−1 s−1, the

lifetime of O2
− is significantly shortened by SOD (5–8).

Prokaryotic cells and many eukaryotic algae contain the Mn SOD and Fe SOD
enzymes, which are believed to be more ancient forms of SOD, whereas some
phytoplankton also contain a Ni metalloprotein (57). Protein sequence data clearly
show two distinct evolutionary paths for the Cu/Zn and the Fe/Mn SODs, and
within the Cu/Zn SOD clade there is a varying degree of conservation in the
protein sequences (5–8). The evolution of the Mn and Fe forms of SOD, most
likely from a common ancestral protein, is attributed to the availability of the Mn
and Fe metal cofactors under conditions when O2 was four orders of magnitude
lower than it is today (58). The Cu/Zn form has been reported to be present only
in higher plants and animals and in the Charophyacean alga, Spirogyra sp. (59).
These data suggest that the divergence of the chloroplast and cytosolic forms of
the Cu/Zn SOD occurred very early in the evolution of the protein (59). There
is, however, evidence that the Cu/Zn SOD exists in unicellular eukaryotic algae,
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specifically dinoflagellates (60–62), whose evolutionary history extends back to
the early Jurassic and which contain plastids derived from an ancestral red alga by
secondary symbiosis (3).

CATALASE Catalase (EC 1.11.1.6) is a heme-containing enzyme that catalyzes the
conversion of H2O2 to H2O and O2. The enzyme is a tetramer with molecular
weights in excess of 220 kD and has a high Km for H2O2, which makes it most
efficient at scavenging high concentrations of H2O2 (5–8). An unusual feature
of catalase is its sensitivity to light and rapid turnover, which may result from
light absorption by the heme group. Conditions that reduce the rate of protein
turnover, such as osmotic, heat, or cold stress, can lower catalase activity (5–8,
63). For photoautotrophs, this feature of the catalase enzyme may affect their
ability to tolerate oxidative stress when exposed to environmental perturbations.
Phylogenetically, catalases from plants and animals are unique and divergent from
those of bacteria and fungi, with bacteria containing several separate lineages
(64).

PEROXIDASES Peroxidases, like catalase, catalyze the reduction of H2O2 to H2O,
but they require a source of electrons that subsequently becomes oxidized. Ascor-
bate peroxidase (EC 1.11.1.11) is a heme-containing monomeric enzyme with a
molecular mass of 30 kD (5). It has a significantly lower Km for H2O2 than does
catalase and uses a large pool (10–20 mM) of ascorbate as its specific electron
donor to reduce H2O2 to H2O in the stroma and on the thylakoids of chloroplasts
(5).

Glutathione peroxidase (EC 1.11.1.9) is a tetrameric enzyme with a molecular
weight of 84 kD. The enzyme is found in both selenium-containing and selenium-
independent forms in the cytosol and mitochondria of animal tissues, but not in
plants (8). This enzyme catalyzes the oxidation of glutathione, a low-molecular-
weight tripeptide thiol compound, with H2O2 (8). Glutathione is very abundant
in animal tissues through the action of glutathione reductase, which regenerates
reduced glutathione (8).

Nonenzymatic Antioxidants

ASCORBIC ACID L-ascorbic acid, or vitamin C, is an essential vitamin in animals
and is abundant in plant tissues. All plants and animals, except humans, can syn-
thesize ascorbate de novo; animals also can obtain vitamin C through their diet.
Ascorbate functions as a reductant source for many ROS, thereby minimizing the
damage caused by oxidative stress. Ascorbate scavenges not only H2O2 but also
O2

−, HO•, and lipid hydroperoxides without enzyme catalysts (5–8), and it can
indirectly scavenge ROS by recycling α-tocopherol to its reduced form. Ascor-
bate has been found in plant cell chloroplasts and cytosol, where it also acts as a
substrate for ascorbate peroxidase.
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GLUTATHIONE Glutathione (GSH) is a tripeptide (Glu-Cys-Gly) found in animals
and plants. It forms a thiyl radical that reacts with a second oxidized glutathione,
forming a disulphide bond (GSSG) when oxidized (8). The ratio of GSH/GSSG
is often used as an indicator of oxidative stress in cells, and glutathione functions
as an antioxidant in many ways by reacting with 1O2, O2

−, and HO•. Glutathione
can also act as a chain-breaker of free radical reactions and is an essential substrate
for glutathione peroxidase (8). The maintenance of GSH levels, and therefore the
reducing environment of cells, is crucial in preventing damage to cells exposed to
conditions that promote oxidative stress.

TOCOPHEROL The tocopherols, specifically α-tocopherol (vitamin E), are lipid-
soluble antioxidants that scavenge ROS (5–8). This phenolic antioxidant is found
in both animals and plants. α-tocopherol, due to its hydrophobic nature, is located
exclusively within the bilayers of cell membranes. α-tocopherol is generally con-
sidered to be the most active form of the tocols. Plants synthesize α-tocopherol
in chloroplasts, with the aromatic ring formed by the shikimic acid pathway—the
same pathway that produces UVR-absorbing compounds, the mycosporine-like
amino acids (MAAs; see below), in many marine algae. By contrast, animals must
acquire tocopherol through their diet. The antioxidant properties of tocopherol are
the result of its ability to quench both 1O2 and peroxides (5–8). A marine-derived
tocopherol known as α-tocomonoenol has been isolated from salmon eggs and pro-
vides enhanced antioxidant protection because of its ability to diffuse in viscous
lipids and prevent lipid peroxidation (65).

CAROTENOIDS Carotenoids are lipid-soluble molecules that protect both plants
and animals against oxidative damage. Photoautotrophs produce carotenoids de
novo, whereas animals must acquire carotenoids dietarily. In photosynthetic or-
ganisms, some carotenoids function as accessory pigments in light harvesting,
whereas others specifically quench ROS produced as a result of overexcitation of
the photosynthetic apparatus by light (5–8, 66). β-carotene can quench both ex-
cited triplet-state chlorophyll and 1O2 because they have highly conjugated double
bonds. Carotenoids can also dissipate excess excitation energy through the xan-
thophyll cycle (5–8, 67), a process, also known as dynamic photoinhibition, that
prevents the overexcitation of the photosynthetic apparatus. Many carotenoids also
serve as effective quenchers of ROS and can prevent lipid peroxidation in marine
animals (68).

SMALL-MOLECULE ANTIOXIDANTS Uric acid, a product of purine metabolism, can
quench both 1O2 and HO• (69). It is found in high concentrations in marine
invertebrates, in which it can be a potent antioxidant (70). Another group of
small-molecule antioxidants is compatible solutes (71). In particular, mannitol
can quench HO• and prevent damage to critical carbon-fixing enzymes in pho-
toautotrophs (72). Dimethylsulfide (DMS) is an important component of global
sulfur cycles and a significant contributor to aerosol fractions in the atmosphere
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(73). Many species of marine macrophytes and phytoplankton produce DMS from
dimethylsulphoniopropionate (DMSP), whose primary function had been assumed
to be as an osmolyte (73). Both DMS and DMSP have been shown to quench HO•.
DMS can diffuse through biological membranes and act as an effective antioxidant
in any cellular compartment (74).

Mycosporine-like amino acids are UVR-absorbing compounds with broadband
absorption from 310–360 nm. They have been extensively studied in a wide variety
of marine organisms (75). Some MAAs have antioxidant activity (76–78). These
compounds are synthesized de novo by the shikimic acid pathway in photoau-
totrophs but are acquired by animals through their diet (75). Mycosporine-glycine
can quench 1O2 (79), whereas other MAAs can quench O2

− (78). In reef-forming
corals, mycosporine-glycine concentrations decline significantly upon exposure
to prolonged high-temperature stress, while antioxidant enzymes increase (80).
The concentration of MAAs in corals declines with increasing depth in propor-
tion to photooxidative potential caused by exposure to UVR and hyperoxia due to
photosynthesis (75).

OXIDATIVE STRESS IN THE MARINE ENVIRONMENT

Reactive Oxygen Production in Seawater

In marine systems, the absorption of solar radiation, and especially of its UVR
wavelengths, by dissolved organic matter in seawater leads to the photochemical
production of diverse reactive transients, including ROS (81). These ROS may have
deleterious effects on bacteria and phytoplankton by affecting cell membranes or
inhibiting photosynthesis. Hydrogen peroxide has the longest lifetime in seawater
and the highest steady-state concentrations (10−7 M) and can readily pass through
biological membranes (5–8, 81).

Hydrothermal vents also produce ROS (82). The abundance of hydrogen sul-
fide (H2S) and O2 near vents leads to the oxidation of H2S in seawater and the
production of both oxygen- and sulfur-centered radicals (82). In particular, elec-
tron paramagnetic resonance spin-trapping has shown convincingly that sulfide
oxidation produces O2

− (82). High concentrations of O2
− near vents probably

leads to H2O2 production by the dismutation of O2
− and to subsequent oxidative

stress for vent fauna. As may be expected, vent worms (Riftia pachyptila), vent
clams (Calyptogena magnifica), and their bacterial symbionts all express SOD and
exhibit peroxidase activity (83).

Oxidative Stress in Marine Organisms

Marine organisms are exposed to and adjust to a wide variety of environmental
factors on varying temporal and spatial scales, from polar to tropical and from
hourly to seasonal, in order to maintain homeostasis and growth and to reproduce.
It should be no surprise that, just like any other metabolic pathway, those processes
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that lead to the production of ROS vary significantly over large gradients in many
environmental factors, and adjustments in antioxidant defenses are required in
order to maintain the steady-state concentration of ROS at low levels and thus
prevent oxidative stress and cellular damage.

Although antioxidant protection is almost always associated with aerobic or-
ganisms, there exists a wide spectrum of oxygen tolerance in anaerobic organisms,
principally prokaryotes (8, 37). Specialized anaerobic bacteria from hydrothermal
vent environments have evolved novel enzymes to quench O2

− without producing
oxygen, which would also be toxic (84). Pyrococcus furiosus, a hyperthermophilic
anaerobic bacterium, contains a superoxide reductase that reduces O2

− to H2O2,
which is then reduced to H2O by peroxidases (84). The superoxide reductase main-
tains its activity at 25◦C, which is far below the growth optimum of 100◦C for this
bacterium but may be adaptive, as these free-living bacteria in the hydrothermal
fluids are mixed with the surrounding cold water (84).

Many bacteria contain Fe and Mn SOD, but several also contain Cu/Zn SOD
(8). These Cu/Zn SODs are distinct from and may be the evolutionary precursor
to eukaryotic Cu/Zn SODs (8). One unique example of a prokaryotic Cu/Zn SOD
is from the bacterium Photobacterium leiognathi, a bioluminescent bacterium
symbiotic with pony fish (85). Originally believed to arise from horizontal gene
transfer from eukaryotes to prokaryotes, differences in the gene sequence of the
P. leiognathi and other prokaryotic Cu/Zn SODs, as well as important differences
in gene structure and function, actually support a prokaryotic origin for the Cu/Zn
SODs (86). One of the important attributes of these bacterial symbioses is the use
of bioluminescence as a mechanism of signaling between con-specific hosts. The
luciferase enzyme that produces bioluminescence is a MFO that utilizes molecular
oxygen. Several recent studies strongly support the hypothesis that the original
selective pressure for the evolution of luciferase was to prevent oxidative stress
and that it then was co-opted for its bioluminescent characteristic, originally a by-
product of its antioxidant activities that can still be experimentally demonstrated
in V. harveyi (87–90).

The production of ROS is a consistent feature of photoautotrophs, and marine
algae are no exception. In unicellular eukaryotic algae, especially dinoflagellates,
all three metalloproteins of SOD have been identified (60–62, 91). Many of these
cells exhibit a daily cycling of maximum SOD activities and other antioxidant
enzymes that are associated with peak midday irradiances and the production of
ROS (61, 62, 91, 92). At least one study has demonstrated that this daily rhythm
is under transcriptional control and that new SOD protein is produced on a daily
basis (91). Other studies have reported distinct seasonal regulation of antioxidant
enzymes based on total daily irradiance in addition to daily rhythms (62, 92). Some
of these species are toxic to bacteria and fish owing to production of extracellular
ROS (93, 94).

Green, brown, and red macrophytes are conspicuous components of many
marine ecosystems, but especially of rocky intertidal systems, in which many
species of attached seaweed are dominant members of the community. These algae
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withstand some of the harshest environmental conditions known, including freez-
ing, desiccation, carbon limitation, and heat stress. These environmental extremes
are conducive to the formation of ROS and contribute to the photoinhibition of pho-
tosynthesis observed in these ecologically important marine algae. The production
of ROS in the brown alga Fucus evanescens has been detected with fluorescent
dyes (95) and is enhanced in freezing, high light, and desiccation stress (96–98).
The increase in ROS production also causes an increase in lipid peroxidation and
a decrease in the quantum yield of PSII fluorescence (96). Additionally, species
vary in susceptibility to oxidative stress (97) and in seasonal acclimatization of
antioxidant defenses to changes in temperature-induced oxidative stress (98). Two
red algae, Mastocarpus stellatus and Chondrus crispus, exhibit zonational patterns
in temperate rocky intertidal ecosystems that reflect their ability to resist freezing
and the accompanying oxidative stress (99, 100). The activities of enzymatic and
nonenzymatic antioxidants increase with tidal height, as does, therefore, daily ex-
posure to air temperatures, for M. stellatus, which always has greater antioxidant
capabilities than C. crispus, which is found in the lower intertidal zone (99). Sea-
sonal acclimatization to irradiance, both its visible and ultraviolet components, also
occurs in macrophytes at high latitudes, where the amplitude in the changes in sea-
water temperature is low (101). Macrophytes exposed to increased visible radiation
and UVR during the breakup of sea ice increase SOD, catalase, and MAAs, all of
which prevent oxidative stress and its subsequent effects on photosynthesis (101).

Many marine invertebrates produce ROS. Bivalve molluscs produce ROS in
response to xenobiotics (102) and changes in temperature, especially heat stress
(103). ROS are also important in the cell-mediated immune response of molluscs
to both prokaryotic and eukaryotic pathogens (104). Interestingly, many bivalve
molluscs are euryoxic and survive fluctuations between hypoxia/anoxia and nor-
moxia with each tidal cycle. During anoxic-normoxic transitions, euryoxic species
produce far less ROS and therefore avoid oxidative stress (105).

Sponges (Phylum: Porifera) with symbiotic cyanobacteria undergo elevated
pO2 in their tissues from photosynthetically produced O2 (106, 107). Exposure
to summertime highs in seawater temperature result in the highest values of total
oxidative scavenging capacity and catalase, which is attributed to the production
of H2O2 (107). Similar temperature-related increases in prooxidant pressure have
been observed in the eurythermal lug worm, Arenicola marina (Annelida: Poly-
chaeta) (108). The increase in ROS production is associated with an increase in
mitochondrial substrate oxidation and higher rates of proton leakage in summer
animals as compared to winter animals (108). Oxybiotic meiofauna also can expe-
rience photochemically generated ROS in intertidal pools (109). H2O2 can diffuse
across the redoxcline, and annelid worms such as Nereis diversicolor respond
by increasing their activities of catalase (109). Worms maintained in anoxic con-
ditions also increase SOD activities, which is, again, a physiological adaptation
to withstand the transition from anoxia to normoxia and the subsequent burst in
the production of ROS (109). Thiobiotic meiofauna, including gastrotrichs and
turbellarians, living in anoxia and exposed to H2S also have higher activities of
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antioxidant enzymes than their oxybiotic counterparts and may be exposed to
oxygen- and sulfur-based radicals like their hydrothermal vent cousins (110).

Marine arthropods (i.e., crabs, lobsters, and shrimp) vary in their antioxidant
defenses according to their level of aerobic metabolism, exposure to chronically
cold environments, or exposure to UVR (111–113). Surprisingly, marine arthro-
pods lack Cu/Zn SOD (114, 115). Instead, these animals use a copper-dependent
hemocyanin for oxygen transport and have an unusual cytosolic Mn SOD lacking
the signal transit peptide that would otherwise direct it to the mitochondrion (115).
This occurs in all Crustacea that use a copper-dependent oxygen transport system
and is believed to be evolutionarily linked to the fluctuation in copper metabolism
induced by the use of copper-dependent oxygen transport systems (115).

Studies on oxidative stress in echinoderms (i.e., sea stars, sea urchins, sea cu-
cumbers, and crinoids) are few. To prevent polyspermy, sea urchins create a phys-
ical barrier to multiple fertilizations of a single ovum. They accomplish this by
hardening the vitelline membrane to create the fertilization membrane, which raises
and hardens as a result of covalently cross-linked products of the oxidation of tyro-
syl residues released by the cortical granules. This reaction requires extracellular
H2O2, which is formed by a membrane-bound NADPH oxidase during a respiratory
burst upon fertilization (116). The excess H2O2 is quenched by a secreted peroxi-
dase and ovothiol C, a nonenzymatic scavenger of H2O2 (116). Although the H2O2

produced is extracellular, this H2O2, if not scavenged in the extracelluar space, may
diffuse back into the now newly fertilized zygote. Recently, major yolk proteins
from sea urchin eggs, which were believed to be vitellogenin, have been identified
as transferrin-like, iron-chelating proteins (117) that could potentially be very use-
ful in preventing H2O2 from participating in Fenton chemistry within the zygote.

Many echinoderms are important broadcast-spawning members of benthic ma-
rine communities, and their planktonic embryos and larvae may therefore be sus-
ceptible to the detrimental effects of UVR. Although total exposure to UVR is
dependent on the stability and optical properties of the water column, planktonic
larvae can be easily advected into surface waters, where irradiances of UVR are
higher. Sea urchin embryos exposed to UVR irradiances equivalent to shallow
temperate coastal environments show symptoms of oxidative stress, as indicated
by elevated concentrations of SOD protein, DNA damage, and apoptosis (118).
Field exposures of embryos at fixed depths reveal similar results down to a depth
of 8 m (M.P. Lesser, unpublished data). Both laboratory and field experiments also
show abnormal embryonic morphology typical of that seen in apoptosis (118).

Marine vertebrates are not immune from oxidative stress. Fish in particular,
including those from the Antarctic, have several well-characterized Cu/Zn SODs
(119–121) that have evolved to maintain catalytic function over a wide range of
temperatures (121–122). Fish also respond to prooxidant pressure due to differ-
ences in metabolic rates (123), pollution (124), and exposure to UVR (125). As in
sea urchin embryos, the larvae of Atlantic cod (Gadus morhua) exposed to UVR
show significant increases in SOD activity and in expression of the cell-cycle gene
p53 (125).
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Physiological Extremes

A relatively new area of investigation is oxidative stress in polar, especially Antarc-
tic, environments (122). Because solubility of O2 is high in the constant, −1.8◦C,
seawater temperatures of Antarctica, polar ectotherms potentially experience
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increased prooxidant pressure and metabolic costs associated with antioxidant de-
fenses. But low temperatures also reduce the conductance of O2 because of changes
in tissue viscosity. Increases in mitochondrial volume density and lipid stores may
potentially compensate for this decreased conductance (122). The increased unsat-
uration of membranes in Antarctic ectotherms can also promote lipid peroxidation
by ROS unless antioxidant defenses are available. Indeed, the Antarctic bivalve,
Laternula elliptica, exhibits a greater potential for lipid peroxidation than does
the temperate species, Mya arenaria, with similar total lipid concentrations (126).
But L. elliptica also has higher concentrations of α-tocopherol and β-carotene,
both lipid-soluble antioxidants known for their lipid peroxidation chain–breaking
capabilities (5–8, 66). Polar invertebrates that may be predisposed to oxidative
stress also contain higher activities of antioxidant enzymes. The Antarctic scallop,
Adamussium colbecki, has significantly higher activities of SOD in its gills as com-
pared to the Mediterranean scallop, Pecten jacobaeus (127). Consistent with the
chronically cold environment in which it lives, A. colbecki also exhibits season-
ally invariant antioxidant capacities except during the austral spring phytoplankton
bloom or during reproduction (128). Studies to date, mostly involving measure-
ments of enzyme activity, generally support that antioxidant enzymes compensate
for exposure to chronically cold seawater temperatures (129, 130). Whether these
compensation strategies are quantitative or qualitative, sensu Hochachka & Somero
(131), is unknown.

One of the best-understood marine invertebrate systems, as relating to oxidative
stress, is that of cnidarians (i.e., sea anemones, corals, and jellyfish) with symbi-
otic zooxanthellae. In particular, reef-forming corals are important members of

←
Figure 1 Detail of events leading to oxidative stress on the thylakoid membrane

of the chloroplast of zooxanthellae. (A) During normal temperatures and irradiances,

light is absorbed by the light-harvesting complex (LHC) and photochemistry in PSI

and PSII produce ATP and NADPH for the dark reactions, in which CO2 is fixed by the

enzyme Rubisco. The efficiency of photochemistry is regulated by the interconversion

of the two pigments diatoxanthin and diadinoxanthin, which is part of the xanthophyll

cycle used to protect the photosystems from overexcitation. Superoxide dismutase

(SOD) and ascorbate peroxidase enzymes in the chloroplast degrade reactive oxygen

species (ROS). (B) During heat stress, membrane fluidity changes (154) result in the

production of ROS. Subsequently, the simultaneous overreduction of photosynthetic

electron transport and the decreased fixation of CO2 (i.e., sink limitation) result in the

overexcitation of the photosystems and the flow of excitation energy primarily through

PSI. The excess absorbed energy cannot be dissipated by the xanthophyll cycle (NPQ,

nonphotochemical quenching). More ROS are formed than can be quenched by the

available enzymatic and nonenzymatic antioxidants, and some species (e.g., H2O2) can

be exported from the chloroplast (bold horizontal arrow). APO, ascorbate peroxidase;

LHC, light-harvesting complex; VDE, violaxanthin de-epoxidase. Adapted from Jones

et al. (150) and Hoegh-Guldberg (132).
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this group. Global climate change, principally the emission of greenhouse gases
(e.g., CO2 and CH4), and the subsequent effects on seawater temperature are the
primary causes of “coral-bleaching” events around the world (132, 133). Seawater
temperatures of 2–3◦C above long-term average summer temperatures result in a
stress response, known as bleaching in corals, in which they lose their zooxanthel-
lae (132, 133). Both field and laboratory studies on bleaching in corals and other
symbiotic cnidarians have established a causal link between temperature stress
and bleaching (132, 133). The extent of coral-bleaching, the extent of subsequent
mortality, and the underlying mechanism(s) that cause bleaching are related to the
magnitude of temperature elevation and the duration of exposure for any individual
event.

Although thermal stress is seen as the principal cause of coral bleaching, other
environmental factors, including those that are affected by anthropogenic influ-
ences, act synergistically by effectively lowering the threshold temperature at
which coral bleaching occurs. The abiotic factor that has the most significant influ-
ence on the severity of thermally induced coral bleaching is solar radiation, both its
visible and ultraviolet components (UVB: 290–320 nm; UVA: 320–400 nm) (133,
134). Exposure to UVR is particularly important during the hyperoxic conditions
(135, 136) that occur intracellularly in corals during photosynthesis, and leads
to the photodynamic production of ROS (5–8). An important response of corals
during exposure to UVR is the synthesis of MAAs and enzymes involved in the
protection of both the host and symbiont from oxidative stress (60, 75, 137, 138).

Exposure to elevated temperatures alone (139), UVR alone (60), or in combi-
nation (137, 140) can result in photoinhibition of photosynthesis in zooxanthel-
lae. Photoinhibition occurs as a result of the reduction in photosynthetic electron
transport combined with the continued high absorption of excitation energy and
the production of ROS. ROS have many cellular targets, including photosystem
II and the primary carboxylating enzyme, Rubisco, in zooxanthellae (Figure 1)
(60, 137). Elevated temperatures functionally lower the set point for light-induced
photoinhibition. Enzymic defenses in the cnidarian host occur in proportion to the
potential for photooxidative damage in symbiotic cnidarians (141, 142). However,
high fluxes of ROS in the host (141, 143) or zooxanthellae (60, 137, 144) can
overwhelm the protective enzymatic response and result in hydroxyl radical pro-
duction via the Fenton reaction (5–8). Both the cnidarian host and zooxanthellae
express Cu/Zn and Mn SODs (60, 138, 145), whereas zooxanthellae also express
an Fe SOD (146).

Oxidative stress has been proposed as a unifying mechanism for several environ-
mental insults that cause bleaching (137, 138). Oxidative stress can lead to bleach-
ing of corals by zooxanthellae exocytosis from coral host cells (140, 147, 148) or
by apoptosis (138, 147–149). A cellular model of bleaching in symbiotic cnidar-
ians has been developed (Figure 2) that includes oxidative stress, PSII damage,
sink limitation, DNA damage, and apoptosis as underlying processes (137, 138,
140, 147, 150, 151). This model is consistent with biomarker proteins expressed
in corals during thermal stress (152, 153). Recent findings can also be included
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Figure 2 Model of coral bleaching caused by oxidative stress that incorporates pho-

toinhibition (150) and apoptosis (137, 138, 147). The chloroplast and mitochondria

(both host and zooxanthellae) are major sources of ROS. Continued exposure to ele-

vated seawater temperatures, concurrent with the increase in ROS production, causes

a progression from Stage 1 (27–28◦C) to Stage 3 (30–32◦C) and apoptosis or cell

necrosis. HN, host nucleus; ZN, zooxanthellae nucleus; HMt, host mitochondria; CP,

chloroplast; ZMt, zooxanthellae mitochondria.

in this model and include differential sensitivity of zooxanthellae thylakoid mem-
branes to thermal stress (154) and the presence of nitric oxide synthase activity
(155, 156), which produces NO• and in turn reacts with O2

− to form ONOO−,
whose ability to diffuse through membranes is much greater than that of O2

−.
UVR and thermal stress also damage DNA in corals (169). DNA damage can

also lead to apoptosis if not repaired. The expression pattern of a putative p53
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protein in Montastraea faveolata after exposure to thermal stress and high irra-
diances of solar radiation is consistent with DNA damage (138). Morphological
evidence indicates both apoptosis and necrosis in host and algal cells of ther-
mally stressed symbiotic sea anemones. Similarly, in thermally stressed symbiotic
cnidarians, ROS-mediated apoptosis and possibly necrosis are consistent with mor-
phological evidence and the upregulation of a putative p53 protein. Apoptosis and
cell necrosis are extremes in a range of cellular responses of corals to oxidative
stress caused by thermal stress, with and without the synergistic effects of solar
radiation (133).

CONCLUSIONS AND FUTURE DIRECTIONS

Increasingly, ecologists/physiologists are examining oxidative stress. Additionally,
oxidative stress is emerging as a common theme in connection with the impact
of global climate change (e.g., global warming and ozone depletion) on natural
ecosystems at all trophic levels. Responses of various marine taxa to this impact
both mitigate protein damage (e.g., heat shock proteins and ubiquination) and, by
quenching ROS, limit damage to DNA, proteins, and lipids.

The future for integrated studies includes molecular genetics, microarrays, pro-
teomics, RNAi assays, knockouts, and marine model organisms, combined with a
quantitative organismal approach. Methods routinely used (e.g., electron paramag-
netic resonance, enzyme assays, and fluorochromes) to assess the level of oxidative
stress should be applied to a variety of marine taxa. These techniques should be
combined with assessments of (a) costs to respond to and repair the damage from
oxidative stress and (b) sublethal impacts on growth and reproduction. Biomarker
development should also be integrated more extensively into an ecological setting.
Few antioxidant genes have been sequenced for marine organisms or have had
their expression quantified. Some research groups have established EST libraries,
which will facilitate the development of microarrays for stress genes and genes of
intermediate metabolism, which can assess stress and energetic costs for marine
taxa under diverse environmental conditions.

The Annual Review of Physiology is online at
http://physiol.annualreviews.org
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