The Food-Energy-Water (FEW) Nexus: Using Hydroviz to Support Undergraduate Students' Learning about Complex Socio-Hydrologic Issues

Authors

Jessica Mostacedo (sjm3161@mavs.uta.edu)¹,
Holly White (holly.white2@maine.edu)² &
Cory Forbes (cory.forbes@uta.edu)¹

¹University of Texas at Arlington

²University of Maine

The Curricular Module and Hydroviz

- Three-week module (Figure 1) offered to undergraduate students from STEM and non-STEM majors in 2020 and 2021.
- Learning goals: (1) To describe the components and overall socio-economic and environmental importance of the FEW Nexus, (2) To examine real data about the different components of the FEW Nexus, and (3) to engage in evidence-based systematic decision-making challenges about the FEW Nexus.
- Students engaged with authentic data using Hydroviz, a data visualization tool, (Figure 2) to describe patterns of water, energy, and food production in a region. Then they apply this knowledge in a case.

Figure 1: Curricular module: https://bit.ly/FEWmodule

Figure 2: Hydroviz interface: https://bit.ly/hydroviz

- The <u>decision-making outcomes</u> were relatively high (mean ≈ 82%)
- Students may need support with the identification of all the components of the problem.
 - Students with higher scores better contextualized the problem in their region, describing the causes, consequences, and constraints of the need of a cleaner energy matrix.
- Students' <u>systems thinking skills</u> may help explain 36% of their decision making outcomes.
- Students may need support to better describe the interactions between technical and conceptual components of information needs, unintended consequences and implementation challenges; and the importance of obtaining buy-in from the community.

Figure 3: Decision-making components (mean and s.e.)

Measure	df	N		X ²			P value	
Decision-	6	99		26.85		5	.000	
making (Figure 3)	THEOREM (IN TODICITIES							
Systems thinking (Figure 4)	6	99		145.42			.000	
	Wilcoxon test*		1	2	3	4	5	6
		2	*	-	_	-	_	-
		3	*		-	-	-	-
		4		*	*	-	-	-
		5	*			*	-	-
		6	*			*		-
		7	*	*	*		*	*
* Statisticall	y-significant	at <i>p</i> =	.05					

Table 1. Results from Friedman tests

Systems thinking component

1. Problem statement
2. Information needs
3. Stakeholder awareness
4. Technical & contextual goals
5. Unintended consequences
6. Implementation challenges
7. Alignment of proposed plan

7. Systems thinking component

Figure 4: Systems thinking components (mean and s.e.)

Decision making outcome (M=23.11, SD=4.37, Max=28)

Systems thinking outcome (M=14.4, SD=3.42, Max=21)

Figure 5: Influence of Systems thinking over Decision-making outcomes

Research Questions

- RQ 1: To what extent is a decision-making task supporting students' problem-solving outcomes about a FEW Nexus issue?
- **RQ 2:** What areas in the decision-making process were students able to engage in most effectively?
- RQ 3: To what extent do students' systems thinking skills support their overall problemsolving outcomes?
- RQ 4: In what ways do students' decision-making process with higher scores differ from students with lower scores?

Theoretical framework

- Multiple Criteria Decision Making:
- Series of decision-making processes to address an issue (Figure 2).
- Systems thinking competency framework:
- Problem solving considering:
- Analysis of technical and contextual elements of the problem.
- Perspectives from multiple stakeholders

Methods

- Student data from 2021 (n=99)
- Statistical analyses:
- Descriptive statistics, Friedman tests, and Simple Linear Regression
- Review of interviews and students' tasks

Discussion

• The results from Hydroviz allowed students to gain critical understanding about the uses of water for agriculture and energy production, and the extent of their impacts in a selected region.

Resources

Module: https://bit.ly/FEWmodule

Hydroviz: https://bit.ly/hydroviz

References: https://bit.ly/HvzRef

• Group studies: https://bit.ly/109Studies