Using 3D Modeling to Promote Design Thinking and Inquiry in an Introductory Geology Lab Megan Plenge, Geological Sciences, UNC-CH ## Objectives - 1. To engage students in the first steps of the scientific process in an intro lab. - a. Develop scientific questions and formulate hypotheses - b. Design and construct models to test hypotheses - 2. To understand how geoscientists use models as tools to study Earth - a. Simplifying complex systems - b. Use model results to predict past/ future events or conditions #### Context - 250-350 students per semester (15-20 sections, 12-20 students per section) - 13 2-hour lab sessions per semester - 8 hours in-class time for the project - Makerspace with free materials on campus: www.beam.unc.edu # Model: Permeability and oil flow in aquifers ## Steps in the project - 1. Exposure to physical and conceptual models in labs - 2. Complete orientation for UNC's Makerspace, watch video lecture on scientific models, get project resources and ideas - 3. Groups of 2-4 develop project proposals, including research questions, hypotheses, and model/ experimental designs - 4. Proposals are reviewed by peers and TA - 5. Groups submit a draft model or detailed plan - 6. Groups present final models + results ## **Example with Feedback** **Question:** How does stream curvature affect erosion? **Hypothesis:** More curvature results in more erosion **Model:** Cardboard box with soil & streambed 1.5cm wide x 2cm deep Experiment: 1 cup of water was poured, average width, depth measured and displaced sediment observed Feedback from TA: Students need to do experiment earlier in semester as they learned too late what their experiment lacked: multiple trials and real-world data to compare with modeled data. ### "The most common misunderstanding about science is that scientists seek and find truth. They don't -- they make and test models." Neil Gershenfield (2011) ## **Example Models and Experiments** **Question:** How many degrees does Earth's temperature have to rise for the city of Honolulu to be submerged due to sea level rise? **Model:** 3D-printed topographic map of Oahu, mathematical model predicting sea level rise with given temperature increase **Experiment:** Measured height of water added relative to datum to drown Honolulu, scaled to Earth system and calculated temperature **Question:** How does size and density of impactors affect ejecta patterns? Model: Cocoa powder and flour, impactors include orange, ping pong ball, etc. **Experiment:** qualitative; observation of ejecta patterns Question: How does ground material impact earthquake shaking and building collapse? Model: Aluminum pan filled with different materials with spaghetti **Experiment:** Place pan on orbital measure movement of building https://drive.google.com/file/d/10_fi ju3j-55FbeZ-EVjJkxXkjR2SHqm/view? building on an orbital sander. sander for 20 seconds and post-shaking usp=sharing Video footage: Question: How does temperature of magma impact flow? Model: 3D printed volcano, tahini **Experiment:** qualitative & quantitative changes in flow at different temperatures Question: Where do we expect to see flooding in Chapel Hill? **Model:** 3D print-out of Chapel Hill with 50x vertical exaggeration and geologic units painted on **Experiment:** Water was poured over model and observations were made on where water collected. **Question:** Which cities are in the most danger due to Mt. Fuji erupting? Model: Modeling clay and corn syrup (after the group failed to make their 3D model based on topography using touchterrain.geol.iastate.edu) (Hasiuk et al., 2017) **Experiment:** Multiple trials of pouring corn syrup down model volcano Students learned: How to adapt when their initial model failed ## 5-point rubric: Model + Experiment | Aspect of project being graded | 1 point | 2 points | 3 points | 4 points | 5 points | |--|---|---|--|--|---| | Experiment: Raw Data (15 points total) | | | | | | | Presentation of raw data & data collection method | Data or collection method missing | Data and collection method both included, but missing key details | Data and collection method both included, but missing minor details | Data and collection method both included, and well explained | Data and collection method both included, well explained, and perfectly detailed | | Ability of data to test hypothesis | Collected data and method of collection do not clearly relate to hypothesis | Collected data or method of collection does not clearly relate to hypothesis | Collected data relates to hypothesis,
but this data alone will not
support/repudiate hypothesis | Collected data clearly relates to
hypothesis, and is sufficient to
support/repudiate hypothesis | Collected data clearly relates to
hypothesis and ALL relevant data
necessary for hypothesis testing is
included | | Sufficient data collected to answer question | No quantitative data included, very few data points collected | No quantitative data included,
sufficient data points for testing
hypothesis included | Little or no quantitative data
included, sufficient data points for
testing hypothesis included | Quantitative data and a sufficient
number of data points, multiple
trials not conducted | Quantitative data and a sufficient
number of data points, multiple
trials conducted | | Experiment: Interpreted Data (20 points total) | | | | | | | Presentation of interpreted data | Data are presented in graphic or
tabular format, but is a reiteration
of raw data and is not detailed
enough to be interpreted by grader | Data are presented in a graphical or
tabular format, but is is a reiteration
of raw data and lacks in
detail/clarity | Data are presented in graphical or
tabular format, but lack in detail
and clarity, and do not include
calculations, trend lines, etc. | Data are presented in a clear, well-
labeled graphical or tabular format,
with few to no calculations / other
analyses | Data are presented in a clear, well-
labeled graphical or tabular format
with trend lines, calculations or
other analyses included | | | Author makes an argument for data supporting/repudiating hypothesis, but it is flawed/unclear | Author makes an argument for data supporting/ repudiating hypothesis, but it is not detailed or informed enough | Author makes an argument for data
supporting/ repudiating hypothesis
that is clear but requires slightly
more detail to be persuasive | Author makes an argument for data supporting/ repudiating hypothesis that is clear and detailed | Author makes an argument for data
supporting/ repudiating hypothesis
that is clear, detailed, and
persuasive without relying on
additional data | | Modeled data interpreted within real-world context | Author mentions a potential real
world context, but does not relate it
to modeled data | Author mentions a potential real
world context and vaguely describes
how modeled data relates | Author discusses real world context
in which modeled data can be
useful, but does not include specific
examples | Author discusses real world context
in which modeled data is useful,
including specific examples | Author discusses real world context
in which modeled data is useful, and
includes actual data from specific
examples for comparison | | Analysis of interpreted data | Usefulness of data set in answering
research question is included as a
"yes/no" statement regarding how
useful data are | Usefulness of data set in answering research question analyzed in broad terms, but with no specific details | Usefulness of data set in answering research question analyzed in terms of 1 of the following: potential errors, simplifying assumptions, or the role of other Earth systems | Usefulness of data set in answering research question analyzed in terms of 2 of the following: potential errors, simplifying assumptions, and/or the role of other Earth systems | Usefulness of data set in answering research question analyzed in terms of potential errors, simplifying assumptions, and the role of other Earth systems | | Model (20 points total) | | | | | | | Usefulness of model in answering research question | You made a model: but why? | Model is a demonstration rather
than a tool, and a poor
demonstration for answering your
research question | Model is a demonstration rather
than a tool, but an excellent
demonstration for answering your
research question | Model is a tool for answering your question, but a different tool may have been more effective | Model is an excellent tool for
answering you research question/
testing your hypothesis | | Design of Model | The design of the model is unable to test your hypothesis | The model design is missing at least
one major element and cannot
sufficiently test your hypothesis | The model design is missing at least
one minor element for being able to
test your hypothesis | The model design is capable of testing your hypothesis | The model design is a great one for testing your hypothesis | | Functionality of Model | The model was designed but never created, so functionality cannot be tested, though the design/ plans look as though they would work | The model does not function as
designed and cannot be made to
work, and no back-up was created | The model does not function as
designed, but can collect flawed
data, OR a back-up of the model
was implemented but not able to
collect data sucessfully | The model functions, but not as
intended, and data collection is
flawed, OR a back-up plan for the
model was implemented and able
to collect (flawed) data | The model functions as designed,
OR a back-up plan for the model
was sucessfully implemented | | Back-up plan for Model/Data Collection | A vague back-up plan for the model/data collection was outlined | A back-up plan was outlined, but not
one that could be implemented
(e.g., just as complicated as original
plan) | A detailed back-up plan for the
model OR data collection was
outlined | A detailed back-up plan for the
model AND data collection was
outlined, but would not sucessfully
test hypothesis | A detailed back-up plan for the
model AND data collection was
outlined, including sources for data
if needed, and would sucessfully
test hypothesis | ## **Student Survey Results** • After completing their projects, students rated their confidence: ## Outcomes and Future Plans - >60% of students felt confident in experimental design - Only ~50% of the class feel the project helped them understand how models are used to solve Earth Science problems DID THIS PROJECT HELP YOU JNDERSTAND HOW THE SCIENTIFIC METHOD IS APPLIED WHEN SOLVING PROBLEMS CONCERNING EARTH Yes Somewhat No - More in-class time will be devoted to project - Groups will have individual meetings with TA at multiple points during semester - Students will do a trial of experiment earlier in semester and report what they learned - Students will have reflection activities linking project to real scientific studies ## Acknowledgements / Citations - Thanks to UNC's QEP team, the UNC Department of Geological Sciences, the BeAM lab, and my TAs for the 2017-18 academic year - Hasiuk et al. (2017). TouchTerrain: A simple web-tool for creating 3D-printable topographic models. Computers & Geosciences 109: 25-31. Question: How does rate of travel of oil through rocks relate to rock porosity/permeability? Model: 3D printed "rocks" including holes/different print densities **Experiment:** qualitative & quantitative changes in flow at different temperatures