Re-conceptualizing the Scientific Inquiry Geoscience Education Literature in Context of the K-12 Next Generation Science Standards (NGSS) Practices

Nancy A. Price- Department of Geology- Portland State University

- Asking Questions & Defining Problems
- Developing & Using Models
- Planning & Carrying Out an Investigation
- Analyzing & Interpreting Data
- Using Mathematics & Computational Thinking
- Constructing Explanations & Designing Solutions
- Engaging in Argument from Evidence
- Obtaining, Evaluating, & Communicating Information

Driving Questions for the Literature Review:

1. How can we re-conceptualize the past literature on "scientific inquiry" in the face of the new terminology of the NGSS?

Developing & Executing Methods:

- Conceptual Framework from which to consider the Practices?
- Defining (comprehensive) search terms.
- What parameters with which to evaluate existing literature?

2. Which Practices are well studied/understudied in the Earth & Space Sciences literature?

Example Practice: Developing & Using Models

Execution of Methods: Emergent Themes for the Earth & Space Sciences:

- Articulating "aspects of inquiry" that are characteristic of each Practice in the Earth & Space Sciences
- Definition of Practice Pairs as "inquiry paths" in the Earth & Space Sciences
- Defining Challenges for applying the Practices to the Earth & Space Sciences

- 1. How can we re-conceptualize the past literature on "scientific inquiry" in the face of the new terminology of the NGSS?
 - Conceptual Framework from which to consider the Practices?

- Holistic view of the process of science as encompassing epistemic, cognitive, and social dimensions

Contributions from the Literature:

- How social aspects of science have influenced the progression science
- Contexts from which to learn and interact with science

- Holistic view of the process of science as encompassing epistemic, cognitive, and social dimensions

Contributions from the Literature:

- How social aspects of science have influenced the progression science
- Contexts from which to learn and interact with science

Intellectual Framework:

- "Activities of science" as pedagogy.
- Inquiry methods lead to a greater depth understanding

Contributions from the Literature:

- Pedagogical strategies ("best practices" for inquiry)
- Professional development that promote inquiry

Intellectual Framework:

- Holistic view of the process of science as encompassing epistemic, cognitive, and social dimensions

Contributions from the Literature:

- How social aspects of science have influenced the progression science

Nature of

- Contexts from which to learn and interact with science

Science & Engineering Practices Science & Engineering Practices Authentic Scientific Inquiry

Intellectual Framework:

- Science practice as a set of epistemic activities
- Practices as skills/competencies on which students can be assessed

Contributions from the Literature:

- Pedagogical strategies ("best practices" for inquiry)

Intellectual Framework:

- "Activities of science"

- Inquiry methods lead to a

greater depth understanding

as pedagogy.

- Professional development that promote inquiry

Contributions from the Literature:

- Definition of practices as used by scientists
- Isolated activities (skills) vs. practice as a set of epistemic activities

• Defining (comprehensive) search terms.

Practice:	Search Terms	Topics Encountered in the Search
Developing and Using Models	Models*; Developing Models; Using Models; Modeling; Model-Based; Model-Based Conceptual Change; Conceptual Model; Scientific Models; Causal Models; Systems Model	mental models; misconceptions/alternative conceptions/preconceptions; conceptual change; analogical thinking; visualization; spatial thinking; student conceptions of deep time; systems thinking; model-based learning; gesturing; concept mapping; Sun-Moon- Earth system; watershed models;
	Note: Search terms as outlined above were combined with "Geosciences"; "Geology", &"Earth Sciences"	computational models; virtual environments; Google Earth/GIS as an educational tool; constructivist learning

- Started with terminology of the Next Generation Science Standards, then added search terms based on the nature of results.
- For each search, results were reviewed for ~15-20 pages (depending on the relevancy of the results) and continued until little-to-no novel/relevant results.

• What parameters with which to evaluate existing literature?

A. Type of Article

Instructional Treatment Research Study Reflective Study of Classroom Products/Student Work	Survey Study	Commentary	Literature Review
---	--------------	------------	-------------------

Outline of a		Description/	Other .
Framework or	Program Evaluation	Evaluation of	Research
Construct	_	Classroom Activity	Study

• What parameters with which to evaluate existing literature?

A. Type of Article

Instructional Treatment Research Study	Reflective Study of Classroom Products/Student Work	Survey	Study	Comme	ntary	Literature Revie	N		
			Outlin Framev		Prog	ram Evaluation		Description/ Evaluation of	Other Research

Construct

B. Grade Level

Eleme	entary	Middle School circa 11 yr, 5/6 grade	High School	K-12	Intro College/ University	Pre-service/In-service Teacher Education	N/A or not stated
-------	--------	--	-------------	------	------------------------------	---	-------------------

Classroom Activity

Study

- What parameters with which to evaluate existing literature?
- A. Type of Article
- B. Grade Level
- C. Practice
 - Asking Questions & Defining Problems
 - Developing & Using Models
 - Planning & Carrying Out an Investigation
 - Analyzing & Interpreting Data
 - Using Mathematics & Computational Thinking
 - Constructing Explanations & Designing Solutions
 - Engaging in Argument from Evidence
 - Obtaining, Evaluating, & Communicating Information
 - Relevant, but not directly connected to a Practice

- 1. How can we re-conceptualize the past literature on "scientific inquiry" in the face of the new terminology of the NGSS?
 - What parameters with which to evaluate existing literature?
- A. Type of Article
- B. Grade Level
- C. Practice
 - Asking Questions & Defining Problems
 - Developing & Using Models
 - Planning & Carrying Out an Investigation
 - Analyzing & Interpreting Data
 - Using Mathematics & Computational Thinking
 - Constructing Explanations & Designing Solutions
 - Engaging in Argument from Evidence
 - Obtaining, Evaluating, & Communicating Information
 - Relevant, but not directly connected to a Practice

D. Learning Target

- A. Develop/Use a model to represent an event or object
- B. Compare models to find similarities and/ or differences
- C. Develop/Use a model to represent differences in amounts, scales
- D. Develop/Use a model to represent an abstract/unobservable concept
- E. Develop/Use a model to describe phenomena
- F. Develop/Use a model to make a prediction
- G. Develop/Use a model to explain relationships
- H. Describe/Recognize the limitations of models
- I. Evaluate/Revise a Model
- J. Describe/Use a Model to represent systems or parts of a system

Driving Questions for the Literature Review:

1. How can we re-conceptualize the past literature on "scientific inquiry" in the face of the new terminology of the NGSS?

Developing & Executing Methods:

- Conceptual Framework from which to consider the Practices?
- Defining (comprehensive) search terms.
- What parameters with which to evaluate existing literature?

2. Which Practices are well studied/understudied in the Earth & Space Sciences literature?

Example Practice: Developing & Using Models

Execution of Methods: Emergent Themes for the Earth & Space Sciences:

- Articulating "aspects of inquiry" that are characteristic of each Practice in the Earth & Space Sciences
- Definition of Practice Pairs as "inquiry paths" in the Earth & Space Sciences
- Defining Challenges for applying the Practices to the Earth & Space Sciences

Driving Questions for the Literature Review:

1. How can we re-conceptualize the past literature on "scientific inquiry" in the face of the new terminology of the NGSS?

Developing & Executing Methods:

- Conceptual Framework from which to consider the Practices?
- Defining (comprehensive) search terms.
- What parameters with which to evaluate existing literature?

2. Which Practices are well studied/understudied in the Earth & Space Sciences literature?

Example Practice: Developing & Using Models

Execution of Methods: Emergent Themes for the Earth & Space Sciences:

- Articulating "aspects of inquiry" that are characteristic of each Practice in the Earth & Space Sciences
- Definition of Practice Pairs as "inquiry paths" in the Earth & Space Sciences
- Defining Challenges for applying the Practices to the Earth & Space Sciences

Example Practice: Developing & Using Models

- Papers resulting from search terms for "Developing & Using Models" (N= 73)
- Some papers fit into multiple categories (e.g. Literature Review & Outline of a Framework)

Topics Encountered in the Search

mental models;
misconceptions/alternative
conceptions/preconceptions;
conceptual change; analogical
thinking; visualization; spatial
thinking; student conceptions of
deep time; systems thinking;
model-based learning; gesturing;
concept mapping; Sun-MoonEarth system; watershed models;
computational models; virtual
environments; Google Earth/GIS
as an educational tool;
constructivist learning

Example Practice: Developing & Using Models

- Elementary & Middle School are well represented, but there is much to learn from studies of 2/4yr colleges/universities.
- How well do teachers understand models?
- Overlap between Paper Type & Grade Level for Developing & Using Models?
 - Elementary Levels and Cognitive

=

Sun, Moon, Earth System

Example Practice: Developing & Using Models **Execution of Methods:** Emergent Themes for the Earth & Space Sciences:

• Definition of Practice Pairs as "inquiry paths" in the Earth & Space Sciences

FIGURE 6 **Specifics of practice** Steps Made a food web model. Science practice model annotated for owl We got our owl pellets and he gave us questions. 3 We then planned out how we were going to make all the measurements and then carried it out. Asking question & designing proble Used mathematical thinking to make measurements. 5 Dissected the owl pellet, found bones, and other information. START Developing Planning & carrying out & using models investigations Obtaining. Analyzing & evaluating & interpreting communicating data information Engaging^{*} Using mathematical in argument from evidence & computational thinking Constructing explanations (From Nyman & St. Clair, 2016,; after & designing solutions Harwood, 2004- J of Col. Sci. Teaching)

Example Practice: Developing & Using Models

Execution of Methods: Emergent Themes for the Earth & Space Sciences:

• Articulating "aspects of inquiry" that are characteristic of each Practice in the Earth & Space Sciences

- Develop/Use a model to represent an event or object
 - Sun-Moon-Earth System
- Develop/Use a model to represent differences in amounts, scales.
 - regional to micro-scales
- Develop/Use a model to represent an abstract/unobservable concept.
 - systems thinking
 - change over time

- A. Develop/Use a model to represent an event or object
- B. Compare models to find similarities and/ or differences
- C. Develop/Use a model to represent differences in amounts, scales
- D. Develop/Use a model to represent an abstract/unobservable concept
- E. Develop/Use a model to describe phenomena
- F. Develop/Use a model to make a prediction
- G. Develop/Use a model to explain relationships
- H. Describe/Recognize the limitations of models
- I. Evaluate/Revise a Model
- J. Describe/Use a Model to represent systems or parts of a system

Practice:	Aspects Unique to the Nature of Science of the Geosciences	Aspects Unique to the Geosciences as Science Practice	Aspects Relevant for Teaching Geoscience Topics
Sc	- Geoscientists investigate concepts that span a wide range of spatial and temporal scales that are commonly understood and discussed using models. - Geologists used models to make sense of abstract and/or unobservable objects and phenomena. ature of cience Authentic Scientific Inquiry	 Analog models are used as physical representations of the Earth that are used in making predictions and investigating ideas. Geoscientists represent Earth systems as models that are used as a common framework guiding all aspects of inquiry. Representations of causal relationships in systems models are predictions that can be tested. 	- Analogies and Analog models can be used as tools for building knowledge of abstract/unobservable geoscience concepts by explicitly mapping the ways that the two examples are related - Model revision is important for students to move from representation to incorporation of causal mechanism. - Analog models allow students to manipulate the spatial and temporal scales of the model to study Earth processes

Re-conceptualizing the Scientific Inquiry Geoscience Education Literature in Context of the K-12 Next Generation Science Standards (NGSS) Practices

Nancy A. Price- Department of Geology- Portland State University

Questions, Comments, Feedback?

naprice@pdx.edu

- Asking Questions & Defining Problems
- Developing & Using Models
- Planning & Carrying Out an Investigation
- Analyzing & Interpreting Data
- Using Mathematics & Computational Thinking
- Constructing Explanations & Designing Solutions
- Engaging in Argument from Evidence
- Obtaining, Evaluating, & Communicating Information