Improving the Odds of Student Success: Academic Supports and More

RENDEZVOUS WS 7.16-17.15

John T. Matsui, Ph.D.
Dept. of Integrative Biology
UC Berkeley
matsui@berkeley.edu
Yesterday

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 – 8:45</td>
<td>Welcome and Overview</td>
</tr>
<tr>
<td>8:45 – 9:30</td>
<td>Exercise: Ourselves and Our Institutions</td>
</tr>
<tr>
<td></td>
<td>A participant self-inventory and discussion</td>
</tr>
<tr>
<td>9:30-10:15</td>
<td>Presentation/Discussion: ‘Outsider at the Table’ - The Biology Scholars Program (BSP)</td>
</tr>
<tr>
<td>10:15-10:30</td>
<td>Break</td>
</tr>
<tr>
<td>10:30-11:30</td>
<td>Exercise: Culture of Science and Student Attrition</td>
</tr>
</tbody>
</table>
Descriptors

Our Stories
Our Stories
Recurring Themes - Why We’re Here

• Open doors
• Pathways
• Respectful
• Meaningful
• Passionate
• Change
• Share

• Pass along
• Awareness
• Own biases
• Understand
• Extend beyond selves
Descriptors

Our Students
Cluster 1 - Students

- Gifted
- Intimidating
- Amazing
- Inspiring goals
- Bright
- Dreamers
- Scary smart
Cluster 2 - Students

- Good will
- Motivated (2)
- Passionate (2)
- Determined
- Ready to try
- Ready to explore
- Earnest

- Ready to get involved
- Eager for more
- Excited about the subject
- Enthusiastic
Cluster 3 - Students

• Uncertain
• Unsure
• Uncharted territory
• Oblivious
• Clueless
• Misguided
Cluster 4 - Students

- Lots of variation academically
- Underprepared
- Scared of math
- Intimidated
- Better than they can conceive
- Timid
- Need confidence to shine
Cluster 5 - Students

- First gen (3)
- Non-traditional routes
- Transfers (2)
- White
- Black
- Young and old
- Working adults
- Poor
- Blue collar
- Career/job focused
- Financial pressures
Cluster 6 - Students

- Very Midwestern
- Big fish in a small pond
- Iconoclasts
- Quirky
Cluster 7 - Students

• Busy
• Over-scheduled
• Over-committed
Cluster 8 - Students

- Need guided mentoring
- Need guidance
- Want more from us
Cluster 9 - Students

- Hard to recruit
- Our best ambassadors
Descriptors

Our Institutions
Cluster 1 - Institutions

• Rigid
• Question everything
• Homogeneous
• Diverse
• In flux
• Student support lags diversification
• Devoid of vision and means
Cluster 2 - Institutions

- Challenged (2)
- Tenacious
- Big potential
- Important
- Focused
Cluster 3 - Institutions

• Resource Rich
• Under-funded (2)
• Funding-strapped
• Sustainable?
Cluster 4 - Institutions

• Large (3)
• Small (2)
• Rural (2)
• Place-based
Cluster 5 - Institutions

- Land grant (2)
- Two-year college
- Public
- Private
- Liberal arts
- Public Ivy
- R1

- Research-selfish
- R1 wanna-be (2)
- Elite
Cluster 6 - Institutions

- Non-competitive
- Connections with faculty
- Emphasis on community
- Supportive/Personal
- Cozy
- Close-knit department

- High expectations
- ‘Top students’
- Value teaching/learning
- Service-oriented
- 1-on-1 interaction
- ‘Whole student’
Cluster 7 - Institutions

- Isolated
- Segregated
- Can be impersonal
- Overwhelming to navigate
- Big pond
- Unsympathetic

- In the business of students (but could be widgets)
- Student focused (not student centered)
- One university only when we aren’t
Cluster 7 - Institutions

• Isolated
• Segregated
• Can be impersonal
• Overwhelming to navigate
• Big pond
• Unsympathetic

• In the business of students (but could be widgets)
• Student focused (not student centered)
• One university only when we aren’t
Cluster 8 - Institutions

• Work-force focused
• Geoscience opportunities
Today

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-9:00</td>
<td>Presentation/Discussion:</td>
</tr>
<tr>
<td></td>
<td>Adapting ‘Best Practices’ and ‘What Works’</td>
</tr>
<tr>
<td></td>
<td>Considerations of scaling and replicating programs that work</td>
</tr>
<tr>
<td>9:00-9:45</td>
<td>Exercise:</td>
</tr>
<tr>
<td></td>
<td>The ‘Devil’ is in the Implementation</td>
</tr>
<tr>
<td></td>
<td>Considerations about how we select, advise, tutor, etc. students</td>
</tr>
<tr>
<td>9:45-10:00</td>
<td>Break</td>
</tr>
<tr>
<td>10:00-10:45</td>
<td>Presentation/Discussion:</td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
</tr>
<tr>
<td>10:45-11:30</td>
<td>Discussion/Exercise:</td>
</tr>
<tr>
<td></td>
<td>Next Steps and Summary Exercise</td>
</tr>
</tbody>
</table>
2 Studies
Impact of Treatment on Retention and Success
Elaine Seymour and Nancy Hewitt
Study

Talking About Leaving:
Why Undergraduates Leave the Sciences

Key Findings

• Students leave STEM because of the curve grading, emphasis on grades vs. learning, and the ‘cut throat’ feeling in their introductory STEM courses.

• Students see it as intentional ‘weeding out.’

• Faculty see it as benign in intent and ‘normal wastage.’

• Hewitt and Seymour see it as ‘over-pruning’ of students with good potential.
Shape of the River (1998)
by Derek Bok & William Bowen

- **Largest study** of race-conscious admissions at selective colleges and universities

- **Found**
 Students admitted under affirmative action performed only slightly below class average and after graduation, out-gained many of their peers

- **Concluded**
 The students’ qualifications that got them admitted *(Selection Effect)* were less important than how they were treated once they were on campus *(Treatment Effect)*
Developing an Implementation Plan

Integrating new material with what’s already been said
Increasing Student Success in STEM

Susan Elrod and Adrianna Kezar

Peer Review Spring 2015

http://www.aacu.org/peerreview/2015/spring/elrod-kezar

While many change efforts have been initiated, almost always at the departmental level, few have reached the institutional level of entire programs, departments, or colleges in the STEM disciplines, described as necessary in these recent reports. There is growing recognition that reform in STEM is an institutional imperative rather than only a departmental one.
The Keck/PKAL model for effective institutional change outlines both a process and content that will lead to increased student success in STEM. Although focused on STEM, it is applicable to any change process that is focused on improving student learning and success.
Model for Institutional Change

Keck/Project Kaleidoscope (PKAL)

Elrod & Kezar (2015)

<table>
<thead>
<tr>
<th>Model Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish Vision</td>
<td>The vision represents the direction in which the campus is aimed in terms of altering its STEM experience to support student success. We encourage a vision that is clear, shared, and aligned with institutional priorities.</td>
</tr>
</tbody>
</table>
Logic Model

• *Establish your goals & work backwards*

• ‘*Backward Design*’

• *Your strategies, use of resources, actions, outputs, outcomes, etc. should align with your goals*
Logic Model

INSTITUTION: UC Berkeley

LOGIC MODEL TEMPLATE - BSP Pre-Graduate Pathway (PGP)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Strategies</th>
<th>Outputs</th>
<th>Outcomes</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSP Staff – Pre-Graduate Pathway (PGP) Coordinator, Academic Advisors, Tutors, Assistant Director, and Director</td>
<td>Exposure of pre- or novice researchers to more experienced undergraduate researchers</td>
<td>Create the PGP</td>
<td>Increase the participation of low-income and first generation students that participate in research on and off campus</td>
<td>Enlarge and diversify the pool of undergraduates conducting biomedical research</td>
</tr>
<tr>
<td></td>
<td>Setting clear roles and expectations for both students and faculty</td>
<td>Hire one graduate student or post-doc to mentor Pathway undergrads</td>
<td>Increase the number of program students that participate in the PGP each year</td>
<td>Increase the number of students admitted to PhD science programs</td>
</tr>
<tr>
<td></td>
<td>Pay students to do research so they can do science while meeting their financial need</td>
<td>Increase the number of students from the larger campus that participate in the Biology Fellows Program (BFP)</td>
<td>Increase the number of students graduating with a biomedical undergraduate degree</td>
<td>Increase the number of first generation and low income students entering biomedical careers</td>
</tr>
<tr>
<td>Cadre of pre-screened biology faculty at Berkeley</td>
<td>Pre-screening of both undergraduates and faculty</td>
<td>Matching students and faculty based on experience, expectations, scientific interest, personalities, etc.</td>
<td>Increase retention in “gateway” courses</td>
<td>Diversify the professoriate</td>
</tr>
<tr>
<td>Pre-screened pool of BSP undergraduates interested in research</td>
<td>Comprehensive and developmental support for students (tutoring, career workshops, application workshops, academic advising)</td>
<td>Increase students' identification with science</td>
<td>Increase students’ career options awareness</td>
<td>Institutionalize science diversity programs at our universities and colleges</td>
</tr>
<tr>
<td>HHMI funds</td>
<td>Communication/feedback loops from application, selection, match, doing research, end of the program</td>
<td>Student and faculty evaluations</td>
<td>Increase faculty awareness of diversity issues in science</td>
<td>Eliminate the need for science diversity programs with universities and colleges employing the “best practices” of BSP to broaden access to science for students from all backgrounds</td>
</tr>
<tr>
<td>Laboratory facilities of faculty</td>
<td>Use information and evaluations to improve the program</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model for Institutional Change

Keck/Project Kaleidoscope (PKAL)

Elrod & Kezar (2015)

<table>
<thead>
<tr>
<th>Examine Landscape and Conduct Capacity Analysis</th>
<th>A direction forward is typically best created through an analysis of the existing landscape (internal campus data as well as external reports on STEM reform) as well as a review of current capacity to engage in change generally—such as history of reform, leadership, and buy-in and ownership among faculty. This stage focuses on collecting data and information to conduct analysis.</th>
</tr>
</thead>
</table>

| Identify and Analyze Challenges and Opportunities | The landscape and capacity information needs to be analyzed in order to identify both challenges and opportunities for the campus. This phase often brings in politics and culture that might be sources of both opportunities and challenges. |
Determine Readiness for Action

In addition to reviewing capacity and opportunities, there are key issues that emerge when implementing specific strategies such as resources, workload, institutional commitment, facilities, timeline, and other areas that campuses should review in order to effectively implement the strategy and to ensure that the campus is ready to move forward with that particular strategy. Campuses will be able to take advantage of opportunities, such as a newly established special campus projects fund, or a new faculty hire with appropriate expertise, that can be leveraged in support of effective implementation. This phase also involves further exploring campus politics and culture.
SWOT Analysis

Strengths
Weaknesses
Opportunities
Threats
HSI Student Success SWOT

Strengths-Weaknesses-Opportunities-Threats

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>STRENGTHS</th>
<th>WEAKNESSES/CHALLENGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Students</td>
<td>Students - motivated, capable, from target populations</td>
<td>Academic Support - issue of consensus on nature of support and @ which course level</td>
</tr>
<tr>
<td>• Staff</td>
<td>STEM Diversity/Student Support - faculty/staff/admin share commitment</td>
<td>STEM Course Availability - impacted, off-sequence scheduling, no CS course available</td>
</tr>
<tr>
<td>• Faculty</td>
<td>Q2 - Shared vision how to get there? Possible ‘threat/challenge’</td>
<td>STEM Faculty - need more FTEs</td>
</tr>
<tr>
<td>• Administrators</td>
<td>Space - high quality/quantity</td>
<td>Time to Transfer – prolonged</td>
</tr>
</tbody>
</table>

OPPORTUNITIES	ETC...	

STEM Enrollment - growing		
Target Student Population - large		
Time to Transfer - consensus on need to reduce		
STEM Jobs - increased demand to fill		
Political Will - strong @ local, state and national levels		
ETC...		

THREATS		

Competition - funds, “turf,” space		
Students - change majors, schools		
Faculty/Staff - leave		
Burn-out - few individuals on overload		
ETC ...		
Model for Institutional Change
Keck/Project Kaleidoscope (PKAL)
Elrod & Kezar (2015)

Choose Strategies/Interventions, Leverage Opportunities

Campuses need to familiarize themselves with a host of possible strategies or interventions to address the challenges identified and leverage the opportunities. They can examine these strategies in light of the capacity of the campus as well as opportunities identified earlier.
| Begin Implementation | Implementation involves drafting a plan for putting the intervention or strategies in place. The plan builds off of the ideas from the readiness for action, capacity of the campus, and opportunities identified. All of these will be built into the plan, as well as a process for understanding challenges as they emerge. In addition to creating a well-laid-out plan, campuses may decide to pilot an initiative first and then consider how to modify and scale it after an initial trial. |
Adapting Effective Programs in New Contexts

A pragmatic 7-step process to adapt an existing, successful program to a new context, while preserving what made it effective in the first place.

1. Select a suitable effective program
2. Gather original program materials
3. Develop a program model/logic model
4. Identify the program’s core components & best practices
5. Identify mismatches between the original program model/materials and the new context
6. Adapt the original program model
7. Adapt the original program materials
| Measure Results | Campuses will also create an assessment plan to determine whether the intervention is working and ways they can be changed over time to work better. |
Assessment and Evaluation

Measuring Change – meaningful metrics of ‘success’
- Baseline
- Comparison Group

Broader Impact
- Beyond program participants
- Institutional change

Questions and Considerations
- Correlation v. Causation?
- Selection v. Treatment?
- Skimming v. Expanding the Pool?
- Longitudinal Effect – over what timeframe?
Evaluation Research

• Evaluation => What’s working
• Evaluation Research => Why it’s working
• Requires – Social Science Researchers
• Measure – Impact on such things as
 • Science Identity
 • Self-Efficacy
 • Reduction of Stereotype Threat
 • Increased Resilience/Grit, etc.
| Disseminate Results and Plan Next Steps | In order to prevent the continued “siloization” of work, it is important for campuses to think about dissemination opportunities on campus as well as off campus, either regionally, statewide, or nationally. Also, keeping the momentum going will require deliberate planning for next steps. |
Implementation

Examples of Some Fundamental Challenges
Challenge

• You can’t ‘fix’ what you don’t understand.

• We’re mono-cultural individuals working with students from diverse cultures.

• How do we come to understand and be understood?
Discussion

• Stereotypes/Generalizations
• Memorize ‘the list’
• Cultural Humility and 3rd Culture
Challenge

Competency Testing
Discussion

• Buying in to the ‘Proving Game’
• Stay focused on the task at hand
• Play your game and not your opponent’s
Challenge

Want v. Need
Discussion

- Upside of giving our students what they want
- Downside of acquiescing
- Must be clear on our definition of ‘success’ in terms of student outcomes
Challenge

Quality Mentoring
Discussion

• 3 critical qualities
 • Instrumental support – info, opportunities, system knowledge
 • Psycho-social support – competency, identity, efficacy
 • Quality relationship – trust, respect, empathy, connection

• Advocates/Anti-advocates
 • ‘Cheerleader’
 • ‘Gatekeeper’
 • ‘Mercenary’
 • ‘Coach’

• Multiple Mentoring
Challenge

Change:

What’s in it for me?
Discussion

• Stakeholders and reward structures
• Triage and Concentric Circles
• ‘Success’ – realistic definition and timeframe
Challenge

Please share your challenge