<table>
<thead>
<tr>
<th>Question</th>
<th>Rating Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is an attribution provided that represents a credible source such as a university or government agency?</td>
<td>yes, no</td>
</tr>
<tr>
<td>Video is free of scientifically out-of-date material.</td>
<td>4 definitely, 3 somewhat, 2 a little, 1 no</td>
</tr>
<tr>
<td>Does the video present valid/accurate and grade-level appropriate concepts, models, and skills?</td>
<td>4 definitely, 3 somewhat, 2 a little, 1 no</td>
</tr>
<tr>
<td>Are references given or experts cited?</td>
<td>4 definitely, 3 somewhat, 2 a little, 1 no, not applicable</td>
</tr>
<tr>
<td>Does the video avoid scientifically unsubstantiated bias?</td>
<td>yes, no</td>
</tr>
</tbody>
</table>

Draft Science Annotation - please include strengths and concerns (content to be used for catalog record):

Overall Rating of Scientific Accuracy
- Meets highest scientific standards, up-to-date e.g. IPCC 5th report
- Scientifically sound but does not meet highest standards
- Minor scientific short-comings that can be addressed in annotations
- Has major scientific short-comings or even conveys misconceptions
Pedagogic Effectiveness

Is the video free from material that might interfere with effective use by a wide range of learners (e.g. negative stereotypes or insensitive treatment of sensitive subjects)?

- 4 yes
- 1 no
- can not answer

Is the video engaging and motivating for students?

- 4 definitely
- 3 somewhat
- 2 a little
- 1 no

Does the video provide a vehicle for asking questions or seeking further information?

- 4 definitely
- 3 somewhat
- 2 a little
- 1 no
- not applicable

Is any pedagogic scaffolding provided along with the video (e.g. a teacher's guide)?

- yes
- no

Draft Pedagogy Annotation - please include strengths and concerns (content to be used for catalog record):

Overall Rating of Pedagogic Effectiveness

- Pedagogically very effective and carefully designed
- Pedagogic design is good and resource is useful as a learning tool
- Pedagogical design does meet basic standards but has considerable shortcomings
- Poor pedagogical design, not recommended as a learning tool
- Can't answer this

Technical Quality

Is the video free of distracting or off-topic advertising?

- yes
- no

Does the video present the concept and content clearly?

- Definitely
- Somewhat
- Little
- No

The video is high quality and has sufficient resolution and clarity.

- 4 definitely
- 3 somewhat
- 2 a little
- 1 no
What is the length of the video (in min)?

Draft annotation about Technical Quality - please include strengths and concerns (content to be used for catalog record):

Overall Rating of Technical Quality
- Technically robust and adequate for use in typical educational environment
- Technically good, minor shortcomings in technical aspects when used in typical educational environment
- Technically weak, minor problems when used in typical educational environment
- Technically weak, major problems when used in typical educational environment
- Not Applicable
- Can't answer this

Teaching Tips -

Teaching Tips (content will be used for catalog record):

If the resource is part of a larger collection and there is a relevant parent URL please copy the URL here (format [URL]- content will be used for catalog record):

Essential Principles of Climate and Energy Literacy

Select the primary principle(s) that are addressed by the resource.

- GP Humans can take actions to reduce climate change and its impacts.
- GP a Climate science improves informed policy and decision-making
- GP b Reducing human vulnerability to and impacts on climate requires multi-disciplinary, integrated understanding
- GP c Climate change affects global/national security
- GP d Greenhouse gas reduction and carbon dioxide sequestration to mitigate climate change
- GP e Strategies to reduce greenhouse gas emission (energy conservation, renewable energies, change in energy use)
- GP f Strategies of human adaptation to climate change
- GP g Actions taken by different levels of society can mitigate climate change and increase preparedness for current and future generations

- 1 The Sun is the primary source of energy for Earth's climate system
- 1a Sunlight warms the planet
- 1 b Earth's Energy balance
- 1 c Axial tilt of Earth governs incoming sunlight and seasonality
- 1 d Milankovitch/orbital cycle
- 1 e Solar variability has no significant impact on Earth's current warming

- 2 Climate is regulated by complex interactions among components of the Earth system
- 2 a World's climate definition
- 2 b Ocean as climate control, oceanic conveyor belt; abrupt changes in thermohaline circulation
- 2 c Greenhouse effect
- 2 d Biogeochemical cycles of greenhouse gases / Carbon cycle
- 2 e Role of aerosols in climate system
- 2 f Equilibrium and feedback loops in climate system
Life on Earth depends on, is shaped by, and affects climate
- Climate's role in habitats ranges and adaptation of species to climate changes
- The Greenhouse effect supports the water cycle and makes life possible
- Climate impacts ecosystems and past species extinctions
- Holocene is unusually stable – human infrastructure vulnerable to change
- Biosphere drives the global carbon cycle

Climate varies over space and time through both natural and man-made processes
- Definition of climate and climatic regions
- Climate is not the same thing as weather – defining difference
- Climate change vs. climate variability and patterns
- Changes in climate is normal but varies over times/ space
- Global warming and especially arctic warming is recorded in natural geological and historic records
- Evidence is that human impacts are playing an increasing role in climate change
- Natural processes of CO2 removal from atmosphere is slow; Long residence time of some GHG

Our understanding of the climate system is improved through observations, theoretical studies, and modeling
- Climate system is subject to the same physical laws as the rest of the Universe
- Observations are the foundation for understanding the climate system
- Observations, experiments, and theory are used to construct and refine computer models
- Meteorology and climatology are related but different sciences, and their processes are modeled and forecast differently
- Climate models are robust enough to be used for guiding decision and actions as response to climate change

Human activities are impacting the climate system
- Global warming is "very likely" caused by human greenhouse gas emission
- Increased GHG concentrations in atmosphere will remain high for centuries and affect future climate
- Human activities have increased GHG levels and altered global climate patterns
- Evidence shows that human-caused global warming have impacted ecosystem resulting in reduced biodiversity and ecological resilience
- Negative impacts of global warming outweigh positive

Climate change will have consequences for the Earth system and human lives
- Sea level rise and resulting impacts is due to melting ice and thermal expansion and increases the risk
- Effects of climate change on water cycle and freshwater availability
- Increased extreme weather events due to climate change
- Increased acidity of oceans and negative impacts on food chain due to increasing carbon dioxide levels
- Ecosystems on land and in the ocean have been and will continue to be disturbed by climate change
- Human health and well-being will be affected to different degrees from the impacts from climate change

Essential Principles and Fundamental Concepts for Energy Education
- Energy is a physical quantity that follows precise natural laws.
- Energy is a quantity that is transferred from system to system.
- The energy of a system or object that results in its temperature is called thermal energy.
- Energy is neither created nor destroyed
- Energy available to do useful work decreases as it is transferred from system to system.
- Energy comes in different forms and can be divided into categories.
- Chemical and nuclear reactions involve transfer and transformation of energy.
- Many different units are used to quantify energy.
- Power is a measure of energy transfer rate.

Physical processes on Earth are the result of energy flow
- Earth is constantly changing as energy flows through the system.
- Sunlight, gravitational potential, decay of radioactive isotopes, and rotation of the Earth are the major sources of energy driving physical processes on Earth.
- Earth's weather and climate are mostly driven by energy from the Sun.
- Water plays a major role in the storage and transfer of energy in the Earth system.
- Movement of matter between reservoirs is driven by Earth's internal and external sources of energy.
| 2.6 | Greenhouse gases affect energy flow through the Earth system. |
| 2.7 | The effects of changes in Earth's energy system are often not immediately apparent. |

3.1	The Sun is the major source of energy for organisms and the ecosystems of which they are a part.
3.2	Food is a biofuel used by organisms to acquire energy for internal living processes.
3.3	Energy available to do useful work decreases as it is transferred from organism to organism.
3.4	Energy flows through food webs in one direction, from producers to consumers and decomposers.
3.5	Ecosystems are affected by changes in the availability of energy and matter.
3.6	Humans are part of Earth's ecosystems and influence energy flow through these systems.

4.1	Humans transfer and transform energy from the environment into forms useful for human endeavors.
4.2	Human use of energy is subject to limits and constraints.
4.3	Fossil and biofuels are organic matter that contain energy captured from sunlight.
4.4	Humans transport energy from place to place.
4.5	Humans generate electricity in multiple ways.
4.6	Humans intentionally store energy for later use in a number of different ways.
4.7	Different sources of energy and the different ways energy can be transformed, transported, and stored each have different benefits and drawbacks.

5.1	Decisions concerning the use of energy resources are made at many levels.
5.2	Energy infrastructure has inertia.
5.3	Energy decisions can be made using a systems-based approach.
5.4	Energy decisions are influenced by economic factors.
5.5	Energy decisions are influenced by political factors.
5.6	Energy decisions are influenced by environmental factors.
5.7	Energy decisions are influenced by social factors.

6.1	Conservation of energy has two very different meanings.
6.2	One way to manage energy resources is through conservation.
6.3	Human demand for energy is increasing.
6.4	Earth has limited energy resources.
6.5	Social and technological innovation affects the amount of energy used by human society.
6.6	Behavior and design affect the amount of energy used by human society.
6.7	Products and services carry with them embedded energy.
6.8	Amount of energy used can be calculated and monitored.

7.1	Economic security is impacted by energy choices.
7.2	National security is impacted by energy choices.
7.3	Environmental quality is impacted by energy choices.
7.4	Increasing demand for and limited supplies of fossil fuels affects quality of life.
7.5	Access to energy resources affects quality of life.
7.6	Some populations are more vulnerable to impacts of energy choices than others.

Audience Level

Please select the grade level for which this video is most appropriate (in your judgement) Check all that apply.

- Primary (K-2)
- Intermediate (3-5)
- Middle (6-8)
- High School (9-12)
- College Lower (13-14)
- College Upper (15-16)
- Graduate or Professional
Informal Education (museums, park displays)

Grade level notes (content will be used for catalog record):

Overall Rating of Relevance to CLEAN
○ High Priority (Resource likely to be included in CLEAN collection of excellent resources)
○ Medium Priority (Resource meets basic CLEAN standards)
○ Low Priority (Resource meets basic CLEAN standards but is of lower priority)
○ Hold for Later Review (Keep in pool for another review at later stage)
○ Excellent but Incomplete (Excellent and relevant but needs improved activity sheet)
○ Do Not Include (Resource doesn’t meet basic CLEAN standards)
○ Review in process (not yet complete)
○ Unvetted (Review not yet complete)

Other Reviewer Comments (for internal use only - not used for catalog record)