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Rates of Change, Sustainability and Derivatives Overview

     When we analyze a process “a posteriori,” or after that process has been defined to end, we have the results (data) in hand and can proceed with a post-hoc analysis.  In our analysis we can quantify whether the given process was sustainable by making a simplifying assumption that the process would have continued in a manner similar to past experience and by comparing

Resource(s) replaced = B    vs.    Resource(s) consumed = C

over a given time period.  In this simplified scenario of a purely post-hoc analysis, we are simply looking at the net amount of resource usage.

Resource(s) replaced - Resource(s) consumed = B – C = DR = Rfinal - Rinitial

We can see that if DR > 0, the amount of replacment equals or exceeds the amount consumed and our process would be sustainable if it continued in similar manner.

     It is also important to include the total amount of time that passed (Dt) when our process occurred. This is necessary if we want to more fully understand how sustainable or unsustainable a process is and when we may expect our amount of resource to be at a given magnitude (e.g. when we may predict 75% of the world's tropical rain forests to be deforested).   Time allows us to find the net rate of change of our resource, written as

DR/Dt  

     We can now use our definition of resource rate of change to analyze the sustainability of the process rate, where sustainable rate can be defined as the condition where net rate of resource consumption does not exceed the net rate of resource replacement.  In mathematical terms a sustainable rate is simply

DR/Dt > 0

If we graph resource amount (R) versus time (t) see a tidy linear plot of which the slope is our net rate (DR/Dt).
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If we were concerned only with retrospective analyses with no application to possible future events, then we may be content with this simplified picture. We would, however, be missing the variations that are almost always encountered with natural processes.  This is to say that if we looked at smaller DR's and smaller Dt's from the actual data and not just the net DR and Dt between points A and B we would likely see many changes in the rate of resource change.  We can get from point A to point B many ways!  A few possibilities where smaller DR and Dt are chosen from the data are shown below.  Clearly, we can see how the resource changed with time with a higher resolution.
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In the case of “a priori” (before the fact) analysis, which is most often the case that is of interest to those grappling with sustainability projections, we are often not afforded the luxury of knowing what the net rate of resource change will be over a long period (a 'long' period depends on a number of factors, but may be anywhere from months to decades).  The sustainability planner or researcher must now break the problem down and look carefully at how the rate of change varied at different times and different conditions in the past and attempt to model (predict) future rates of change.  Rates of change are rarely constant in nature and, thus, we must consider changing rates of change!

The most effective way to address this, as discussed above, is to look at very small increments of a process; in other words we want to look at very small portions of the net resource change by zooming in on DR and Dt.  If we then piece together many of these zoomed-in, or smaller DR's and Dt's we get a much fuller understanding of how the process is proceeding.  

For example, consider the graph below.  The net rate of change from point A to point B is our familiar straight line.  If we took a measurement of our resource at some time before the end of the process and plotted this additional middle-point (M), we have broken the process into two pieces (in red) and we see a more complex rate of change history.    

[image: image3.jpg]M




If we broke our process into many pieces and many small DR's and Dt's between points A and B we would get ever closer to the actual rates of change and amount of resource at a given time.  It may have looked something like the green (curved) line in the graph below.  Notice how just breaking DR/Dt into just two lines (AM and MB) improves our resolution.
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Note that we are very close to the definition of a derivative.  In essence, if we let the Dt's get infinitessimally small we can define a derivative in the way that it is used in calculus.  Derivatives can be used with continuous functions and are an extremely valuable tool for researchers. If we had data that could be represented with a continuous function we could change our notation and our rate of change would be known as the derivative dR/dt (we often see this as dy/dx). 

For our data and to put into practice what we have just discussed, we will be looking at discrete values; that is, we will be looking at values of 'R' that were collected at different times, with some amount of time between our recorded values (another way to think about this is that we have a finite amount of data points, rather than an infinite continuum as is the case with a continuous function).  Our 'derivative' then is a 'discrete derivative' and is simply the rate of change between each of our collected data points!

How is this useful?  Consider the data below.  {Have students plot this data in a spreadsheet}.  We have now plotted our data  and connected each point with a small line to produce the curve.  We see that R is initially increasing, then decreases, and finally increases again; all at variable rates.

Data:

Time

  
Resource (10+sin(t))

0.0


10

0.1


10.0998334166468

0.2


10.1986693307951

0.3


10.2955202066613

0.4


10.3894183423087

0.5


10.4794255386042

0.6


10.564642473395

0.7


10.6442176872377

0.8


10.7173560908995

0.9


10.7833269096275

1.0


10.8414709848079

1.1


10.8912073600614

1.2


10.9320390859672

1.3


10.9635581854172

1.4


10.9854497299885

1.5


10.9974949866041

1.6


10.9995736030415

1.7


10.9916648104525

1.8


10.9738476308782

1.9


10.9463000876874

2.0


10.9092974268257

2.1


10.8632093666489

2.2


10.8084964038196

2.3


10.7457052121767

2.4


10.6754631805512

2.5


10.598472144104

2.6


10.5155013718215

2.7


10.4273798802338

2.8


10.3349881501559

2.9


10.239249329214

3.0


10.1411200080599

3.1


10.0415806624333

3.2


9.94162585657242

3.3


9.84225430585675

3.4


9.74445889797317

3.5


9.64921677231038

3.6


9.55747955670515

3.7


9.47016385909151

3.8


9.38814210905728

3.9


9.31223384081603

4.0


9.24319750469207

4.1


9.18172288893559

4.2


9.12842422758641

4.3


9.08383406325055

4.4


9.04839792611048

4.5


9.0224698823349

4.6


9.00630899636654

4.7


9.0000767424359

4.8


9.00383539116416

4.9


9.01754738737567

5.0


9.04107572533686

5.1


9.07418531767227

5.2


9.11654534427985

5.3


9.1677325577761

5.4


9.22723551244401

5.5


9.29445967442961

5.6


9.36873336212768

5.7


9.44931445740236

5.8


9.53539782058624

5.9


9.62612333516976

6.0


9.72058450180107

6.1


9.81783749572791

6.2


9.9169105971825

6.3


10.0168139004844
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How can we mathematically determine how R changes with time for each point?   Simple.  We find and plot the the rate of change (DR/Dt).  Now plot the rate of change of the data. {Have students calculate change in R between each point and divide by change in time, 0.1. Plot results.}
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For positive values of rate of change (DR/Dt > 0), R is increasing with time (up until t=1.6, or so). Likewise, our rate is negative when R is decreasing.  Where our rate changes from positive to negative is when DR/Dt crosses over 0.  In other words, when the value of R reached the top (maxima) or bottom (minima) of the first curve, its value crossed zero on the rate of change curve.   

We can also see that our rate of change bottoms out at just over t=3.1.  If we look at the first curve we see that this point is in the middle of the decrease.  It is right between the top (maxima) and bottom (minima).  Importantly, this is where the “concavity” changes.  If we look at the first curve, we can imagine it composed of an upside-down 'U' shape joined to a regular 'U' shape.  When the 'U' shape points up (is upside-down), we call this concave up.  When the 'U' shape is pointing down we call this concave down.  Where the 'U's meet is where the concavity changes and is called an “inflection point.”  This inflection point is where the rate (DR/Dt) bottoms out; R does not change very much as time passes around 3.1.

We have now very precisely analyzed the resource 'R' and its rates of change.  This is a very important first step!  To practice more, we will look at a practical example dealing with polluted alkaline water.

