Outcomes

Fundamental Principals

Mathematics as a problem solving tool

Basic knowledge and skills

Effective communication

*Chemistry: Being able to perform/ set up an experiment

Physical Science

Understanding deeper/ fundamental meanings

Identify/ justify assumptions

Translate assumptions/ models to appropriate math tools

Recognizing appropriate math tools

Lab practice, safety, info lit, working well collaboratively

Written, oral, audience awareness

<u>Mathematics:</u> The "proof:" can they produce/ recognize one?

Strategies

Informal assessment:

Faculty discussions, student-by – student

Sequential proficiency tests

- basic knowledge
- prerequisites

Providing feedback after group presentation.

* <u>Physics:</u> Understanding conservation/ symmetry principles