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Semi-brittle

Brittle (loss of cohesion) Ductile (continuous deformation)



Semi-brittle features in nature

Micro scale

(Whipple Mountains, CA)



Semi-brittle features in nature

Qutcrop scale

(Beagle Channel, Chile
Hayman and Lavier, 2014))



Semi-brittle features in nature

Exnumed mid-crustal shear zone
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Rock physics vs. structural geology

For given temperature
pressure condition in one
mineral phase

 Brittle (discontinuous):
breaking process
occurs over a small
range of stresses

« Ductile (continuous):
breaking process
OCCuUrs over a wide
range of stresses
(ductile fracture or
creep)
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Semi-brittle = transition from brittle to ductile

(Kholstedt et al., 1995)



Rock physics vs. structural geology

Involves at least 2 (mineral) phases: One e
phase is britftle and the other viscousat AN . -
given temperature and pressure conditions. | e
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Mixed brittle-ductile deformation can be

observed from large scale to micro scale. P S S e
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The weak viscous phase creeps and deforms & |\

in a ductile manner. —30f
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Fractures and fluid filled veins are observed in
the brittle phase.

0 100 200 300 400 500
Stress [MPa]



Mixed rheology

Strain partitioning between competent and incompetent material:
Impact on earthquakes, tremor, and creep?

Increasing ratio of incompetent/competent material

>

f_;@_ i{Mixed continuous-discontinuous Continuous deformation d
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Seismic slip at kilometer- < meter scale seismic slip Microseismically active, flowing
scale possible in interacting possible zone, large ruptures do not nucleate

clusters of competent bodies but may propagate through
—_—

High interaction through stress Moderate interaction Low interaction between
bridges between competent bodies competent bodies

Localized peaks in shear Fluctuating shear strain rates Fairly uniform shear strain rates
strain rate

Crystals Beach Complex, New Zealand Fagereng and Sibson, 2010)



Hypothesis

90 volume percent of all rocks are polymineralic.
How does this affect the deformation dynamics?
Hypothesis:

Interaction of brittle and ductile deformation processes controls
slip-dynamics and can lead to strain transients.



Hypothesis
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How can we study the deformation of rockse

moving



How can we study the deformation of rockse
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~ Only snapshot, no processes
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The problem of rocks being too sfrong

« Geologic strain rate:

107—12 s-1

« Really super slow
deformation




The problem of rocks being foo strong

© South Tyrol Museum of Archaeology




The solution: scaling!

50 x smaller



The solution: scaling!

Toy cars are properly scaled for shape but not for strength!

50 x smaller



The solution: scaling!

In analog experiments we scale for rheology




Pros and cons

Using physical experiments

Limitations:

 No real rocks

« Non trivial scaling to nature

« Limited pressure, temperature, strain rate

Svitable to investigate complex rheologies:

. No a priori rules for plastic or viscous response
. Direct observation of dynamic processes

. See-through capability



Physical models

Model materials
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Physical models

Model materials

<1<
MWW= | Bl <o o

=
~ spring viscous dashpot friction block
Elastic Viscous Perfect
Plastic

Semi-brittle = combination of all three end members



Granular model material

Acrylic discs
(brittle, frictional)

« Changing grain
sizes

* Impact on shear
band width

w224

(a) Strain-hardening stage  d-azsmpo i

* Impact on fault
behavior
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(Oohashi et al. ,2013)

== Rotational side



Elasto-plastic model material

o Gelatin

* Incompressible

« Photoelastic
(stress can be seenin
the material)

* Impact on fault
behavior

x = 14.075 mm

(Lee et al. ,2015)



Semi-brittle model material

Cross-linked polymer

« ‘Two-phase’ material Micro-gel grains

(brittle)

» Visco-elasto-plastic

« Power-law yield stress
fluid

* Yield stress is dependent
on concentration

» Bulk viscosity is
dependent on pH

Viscous interstitial material



Physical models

Pressure cell:

Fracture initiation due
to overpressure
Recording:

* Pressure

* Fracture shape
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Pressured air




Fracture evolution under pressure
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Fracture evolution under pressure

a) b)

Elasto-plastic

Visco-elasto-plastic
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Physical models

Shear cells:

Simple shear
Spring pulled
Recording:
 Force

« Displacement
« Strain field

Distributed simple shear

F(t) | L




Conservation of power

Force release

Initial loading phase
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Conservation of power

Loading due to plate motion Force release
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Slip dynamics

Recording slip dynamic ranging from stick-slip to creep

air viscous fluid
F [N] FIN]  smalln FIN] largen
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(Modified after Higashi&Sumita, 2009)



Localization

Strain localization is dependent on material.
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Fracture evolution and pattern

eloci’ry field
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Fracture pattern




Conclusion: Rheology governs deformation
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