Did Deglacial Unloading Reactivate the Lost Lakes Fault, a Brittle Structure in the Tuolumne Intrusive Suite, Sierra Nevada, USA?

Richard Becker (UW-Madison), David Greene (Denison University), and Basil Tikoff (UW-Madison)

Abstract

The Lost Lakes Fault is an ~8 km long north-striking structure exposed along the Sierra Crest in Yosemite National Park. The northernmost 3 km is exposed in a series of west-facing cirques while the southern 5 km lies in a southward-draining glacial basin. The fault is marked by a prominent east-facing scarp that dips 80 degrees and ranges in height from ~0.5-10 m, with 4-6 m being typical. The topographic expression of the fault in the south-draining basin is minor. Field evidence indicates at least three periods of fault activity: an early phase (Cretaceous in timing?) and two Quaternary phases. The early phase is supported by the occurrence of pseudotachylite, cataclasite, chlorite, quartz, and epidote along the fault surface, which we interpret to indicate deformation at substantially greater pressures and temperatures than those provided by the near-surface environment. The scarp's lowermost portion is highly planar and displays delicate slickenlines and vein coatings while the scarp's upper reaches are rounded and glacially polished. The field evidence indicates at least three phases of Quaternary activity: a pre- to syn-glacial phase and a post-glacial phase. Immediately to the west of the faulted cirques is the northwest-trending Lyell Canyon which was filled with ~730 m of ice during the Last Glacial Maximum. Our primary hypothesis is that deglaciation triggered the Quaternary displacement on the Lost Lakes Fault. If so, displacements on this fault might have occurred repeatedly through various glacial episodes and the shear sense might have been reversed during periods of glacial growth. Alternative hypotheses are that it was reactivated due to the topographic amplification of seismic energy radiating from the Sierra Nevada range front or from regional tectonic stress.

Acknowledgements

RAB acknowledges his coauthors (DG & BT) and his two good-natured field companions and assistants: Matt Walker and Joey Lane (R & L of upper left photo). The National Park Service staff of Yosemite National Park are thanked for permitting this study and for working to maintain the landscape’s wilder-ness character. The UW-Madison Geoscience Department and Chevron are thanked for partially funding this work.

From Greene (1996). We are testing the deglaciation hypothesis with 10Be dates from the fault scarp and erratic boulders at the top and bottom of Lyell Canyon. The boulders will bracket the deglaciation of Lyell Canyon; if the fault scarp dates do not match the timing of deglaciation then this hypothesis may be rejected.