
nalog sandbox modeling is used to study the impact of syntectonic 
erosion and sedimentation on fault geometry and exhumation rates 
in thrust wedges with one and two frictional décollement levels. The 

diversity of exhumation patterns in eroded thrust wedges is controlled by the 
mode of fault propagation, depending on the basal friction (high or low). 

In the thrust wedges with one and two décollements, different accretion 
mechanisms are activated depending on interactions between surface pro-
cesses and wedge mechanics: frontal accretion, backthrusting, underthrus-
ting and underplating due to décollement-induced duplex formation at depth. 
These mechanisms may function simultaneously, being located at different 
parts across the wedge.

Presence of one décollement in the accreted series allows underplating 
of thrust units developing an anticlinal stack, whose growth and location is 
favored by erosion. The cover layers are nearly completely eroded above 
the antiformal stack and form the synformal klippe in frontal part of the thrust 
wedge. 

Erosion limits the forward propagation of thrust wedges and favors the 
underthrusting of basal layers allowing duplex formation. At the advanced 
stages of erosion, the development of major backthrusts is observed in the 
thrust wedges without or with one décollement, but no backthrusts is formed 
in the wedges with two décollements. Variations in the erosion taper lead to 
changes in duplex geometry and exhumation rate in the thrust wedges with 
two décollements. 

Syntectonic sedimentation induces forward propagation of flat detach-
ments, resulting in the formation of a piggyback basin. 

Syntectonic erosion and sedimentation acting simultaneously on the 
thrust wedge promote formation of a triangle zone between the frontal imbri-
cate faults of the wedge and the foreland basin. 

The experimental results support the observations on structural evolu-
tion and erosion in the Alberta Foothills of the Canadian Rockies and in the 
Quebec Appalachians. 
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No exhumation is observed. The wedge slope 8° (e) represents the critical
accreting taper angle for the thrust wedges with high basal friction.

Exhumation of basal layers is observed in the dome-like antiformal stack at the rear of the wedge at the 
end of shortening (d). Thrust faults steeply plunge down the section at the frontal part of the growing anti-
formal stack (c–d). The cover layers above décollement are completely detached from the basal layers 
and compressed in synformal klippe (c–e).

The independent system of thrusts develops above each décollement (red square). The basal layers below 
the lower décollement form antiformal stack growing through shortening (b–d) but they are not exhumed 
(d). The cover layers above the lower décollement are nearly completely eroded above the stack (d). Thrust 
faults steeply plunge down the section at the frontal part of the growing antiformal stack (d). The imposition 
of erosion taper with lower (6°) angle than the critical value (8°) in the models with décollements promoted 
formation of antiformal stack with high extent of exhumation.

Thrusts are frequently independent below and above the upper décollement (red square). The basal 
layers below the lower décollement form small-scale normal duplex slightly growing through shortening 
(b–d). Basal material is never exhumed (d). The cover layers form individual ramp-anticlines (c–d). 
Thrust faults are slightly inclined down the section at the frontal part of the growing basal duplex (d). Only 
cover layers above the upper décollement are eroded above the duplex (d). The 8° erosion profile (equal 
to critical slope) provided formation of individual ramp-anticlines in the upper wedge above the décolle-
ment and small scale normal duplex below it with low amount of basal underplating.

Critical taper angle (α+β) composed of the dip angle of basal detachment β and the 
taper angle α determines the geometry of a thrust wedge, modified after Davis et 
al. (1983). Critical taper angle of our model wedges is equal to the imposed erosio-
nal slope (α′) because basal detachment is horizontal. 

(a) Proportions of initial (Sinit), eroded (Serod), and final (Sfinal) areas in model wedges used to calculate extent of erosional removal (Eeros). Serod=Sinit+Sinp−
Sfinal. (b) Ratio of basal underplating (Rund) calculated as a ratio of the area of basal layers (Sund) with respect to final area (Sfinal) in model wedges. Sinit, Sfinal and 
Sund are measured from digitized photos of the model wedges. Sinp is calculated from experimental parameters.

Interactions between surface processes and wedge mechanics have important consequences 
on the structure and evolution of foreland thrust belts. Different accretion mechanisms are 
thus combined to account for wedge growth: frontal accretion, backthrusting, underthrusting 
and underplating due to décollement induced duplex formation at depth. These mechanisms 
may function simultaneously, being located at different parts across the wedge. 

Our experiments clearly reflect these complex feedback mechanisms. Addition of erosion 
limits thrust wedge forward propagation  and thickening. The higher rate of erosion leads to 
higher extent of exhumation of basal material. Variations in erosion slopes led in changes of 
fault kinematics and of the extent of basal material exhumation.  

Time structure map of the Precambrian basement 
in the Quebec City area

General geology of the St. Lawrence Lowlands 
and the southern Quebec Appalachians

Geological map of the Quebec City area

modified after Globensky (1987)
modified after Thériault et al. (2005)
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Syntectonic sedimentation in the foreland of the 
fold-and-thrust belt changed the dynamics of the tectonic 
wedge and favoured the activation of weak décollement 
layers at the base or within the cover. This led to the forward 
propagation of detachments and induced the development of 
piggyback basins.

Syntectonic erosion retarded forward propagation of the
wedge, enhanced material transport across the wedge, and 
focused internal deformation and exhumation close to the 
backstop.

Syntectonic erosion and sedimentation together affected the 
thrust wedge kinematics; a series of backthrusts and/or 
triangle zones developed at the rear of the wedge.

Deflection and rotation of frontal detachments was influenced 
by the presence of an oblique, steep basement escarpment in 
front of the growing wedge, by gradual changes of sand layer 
thickness across the ramp and by differential slip along the 
basal detachment. Deflection is produced by differential 
forward motion of the hanging wall along the fault strike and a 
counter-clockwise rotation about a vertical axis.

Re-interpreted seismic line across the Appalachian front showing location of the triangle zone (TZ). 

h–height of rigid basement, 
HF–high basal friction, 
LF–low basal friction, 
DL–décollement level.

Variations in the initial thickness of sand layers are controlled by frontal and lateral rigid escarpments 
parallel or oblique to the shortening directions, which were introduced at the base of the models. 
Their geometry mimics the structure of the Grenville basement in the Quebec City area. 

Experiments with syntectonic sedimentation and erosion Upper crustal structure across the Appalachian front

Note deflection in plan view of frontal thrust against the deep basement escarpment and 
development of backthrusts and triangle zone at the rear of the thrust wedge.
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