
Computer Modeling in the Structural Geology Classroom:  Understanding the Importance of Structure to Other Disciplines
Kirsten M. Menking, Department of Geology and Geography, Vassar College, Poughkeepsie, NY  12604

Introduction
At a recent NSF-sponsored workshop on Teaching Structural Geology in 
the 21st Century, working groups formed to explore the creation of 
course materials that would illuminate the importance of structural 
geology to other disciplines within the Earth Sciences and to consider 
the role of numerical modeling in instruction. Two STELLA models, one 
of the flow of ice within glaciers and the other of isostasy and crustal 
rebound, have been created at Vassar College and meet both of these 
goals. 

STELLA is an iconographical box-modeling software package that 
represents reservoirs as boxes and flows between them as arrows. A 
click of the mouse allows initial conditions, boundary conditions, and 
mathematical relationships between variables to be specified. A built-in 
graph pad allows the modeler to watch the progress of variables 
throughout the run.

Both modeling exercises lend themselves to use in structural geology, 
geomorphology, or geophysics courses and show the importance of 
rheological behavior to geodynamics.

STELLA

Structural Thinking Experimental Learning Laboratory with Animation - 
icon-based dynamical systems modeling tool developed by High 
Performance Systems, Inc.  

  Boxes represent reservoirs 

  Arrows represent flows into and out of 
  reservoirs

  
  Dependencies of variables are represented 
  with pink linking arrows 
 

  Converters, hold values of constants and equations.  
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Other Available Models
Fully documented and debugged STELLA and Fortran models along with 
exercises, answer keys, and course notes have been developed for 
distribution to anyone interested in teaching numerical modeling to 
undergraduate Earth science students. In addition to the glacier flow and 
isostasy models, exercises available now include: 

  The global phosphorus cycle
  U-Pb concordia/discordia dating techniques
  Heat flow in permafrost
  Earth's energy balance and temperature
  James Lovelock's Daisyworld
  The impact of climate change on a chain of lakes in eastern
  California
  Scarp diffusion

To access materials, use a web browser to go to:
http://blackboard.vassar.edu

Login:  geoguest
Password:  geoguest

Glacier Model
The glacier model (left panel below) consists of 10 reservoir boxes, each 
of which represents the volume of ice within a 1-km-long down-valley 
section. Accumulation and ablation add and remove ice from the surface 
of each section, and the Glen flow law, relating shear stress within the 
ice to strain rate, governs the flow of ice from each section to the next. 
To simplify the model, shear stress is calculated based on the assumption 
that the glacier has a uniform cross-valley width in order to determine 
ice thickness. Variations in bed topography lead to thickening and 
thinning of the ice over lower and higher slope sections respectively. 
Students can explore the roles of viscosity and the power law 
relationship between stress and strain rate on the resulting temporal and 
spatial behavior of the modeled ice.

Isostasy Model
In the isostasy and crustal rebound model (right panel below), the 
maximum deflection expected for a given load is first determined from 
the relative densities of the load, crust, and mantle and the thickness of 
the load. Thereafter, a crustal relaxation routine involving mantle 
viscosity is invoked to show the gradual response of the crust to the 
imposition or removal of the load. In the model developed at Vassar, a 
large lake, such as Lake Bonneville in Utah, is used as the load, and 
students experiment with the impact of changing lake levels and mantle 
viscosities on isostatic compensation.
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Glacier Movement

Polar glaciers - frozen to bed, flow by 
internal deformation of ice under 
influence of gravity (Glen flow law)

Temperate glaciers - water between ice 
and bed, move by internal deformation 
plus sliding

Each colored line represents 
the surface of the glacier at a 
particular time slice in the 
model run (e.g. t200 = 200 
years into the run).  t0 
represents the bed 
topography, and the model 
begins with no ice on the 
landscape.  Thereafter, 
accumulation, ablation, and 
flow lead to a progressive 
thickening and downhill flow 
of the ice.  Note that an 
increase in slope angle leads 
to glacier thinning, whereas 
thicker ice is found on lower 
slopes.
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Ice hardness (viscosity) is 
strongly influenced by 
temperature.  The model 
run to the right depicts the 
impact of different 
hardness values (A in the 
Glen flow law equation) on 
the resulting profile of a 
steady state glacier.  Stiffer 
ice leads to a thicker 
glacier.

.

Glen Flow Law

A*(ρg*sinα)3 * z4
u =

20

τ = ρgz*sinα

du
dz

= Aτnε =
.

τ = shear stress
ρ = ice density
g = gravitational acceleration
α = slope angle

z = ice thickness
u = average velocity

ε = strain rate

A = ice hardness (analogous to viscosity)
n = ~3 for most glaciers

du/dz = change in velocity with depth

ice flow = u * z * unit width

Model of glacier flow via the Glen flow law

G.K. Gilbert surveyed shorelines of late Pleistocene Lake 
Bonneville in Utah (see shoreline in backdrop photo) and 
recognized that those developed on islands in the center 
of the lake were now at higher elevations than their 
counterparts at the lake edge (see shoreline deflection 
plot at right).  He surmised that the lake had deflected 
the crust downward, and that the shorelines created after 
filling achieved their current elevations as a result of 
isostatic rebound when the lake drained.  Since the center 
of the lake experienced the maximum load, its shorelines 
rebounded the most. 

Here we use the insights of Gilbert and later workers to 
create a simple model of isostatic compensation for Lake 
Bonneville.  An initially empty lake basin is allowed to fill 
in response to an assumed late Pleistocene climate, and 
the crustal deflection associated with the growing load is 
determined.  An instantaneous drop in lake level, such as 
occurred during the Bonneville flood, is modeled by 
shutting off inflow at 30 kyrs.    
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Isostatic Compensation

f = 
π
w

dmax = maximum deflection
h = load thickness
ρw = water density
ρm = mantle density

d = deflection at time t
t = time
tr = response time

µ = mantle viscosity

g = gravitational acceleration

w = load width

f = length scale factor

Map of warped Bonneville shoreline
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Bonneville Lake History
Currey and Oviatt (1985)
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In this experiment, 
Lake Bonneville is 
modeled as a simple 
cone with maximum 
depth of 335 m, surface 
area of 51,640 km2, and 
volume of 7500 km3.  
The initially empty lake 
achieves equilibrium 
between inflow and 
outflow quickly, but 
the crust takes some 
time to respond due to 
the high viscosity of 
the mantle.  After 30 
kyrs, the inflow is cut 
off and the lake level 
falls.  Simultaneously, 
the crust rebounds to 
its starting elevation. 

Here the impact of 
mantle viscosity on 
isostatic compensation 
and crustal rebound is 
readily apparent.  The 
more viscous the 
mantle, the more time 
is required to achieve 
the full displacement 
possible for a given 
load.  Viscosities in 
poise.  

Lake Bonneville

Utah

Vita-Finzi (1986)

Shelton slide collection

http://www.greatbasinnaturalhistory.org/Climate%20change/lake_bonneville.htm


